Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Small ; : e2403683, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109560

RESUMEN

Li-O2 batteries (LOBs) have sparked significant interest due to their fascinating high theoretical energy density. However, the large overpotential for the formation and oxidation of Li2O2 during charge and discharge process seriously hinders the further development and application of LOBs. In this work, metal-organic frameworks (MOFs) with different metal clusters (Fe, Ti, Zr) are successfully synthesized, and they are employed as the photoelectrodes for the photo-assisted LOBs. The special dual excitation pathways of Fe-MOF under illumination and the superior separation efficiency of photocarriers, which significantly enhance the activation of O2/Li2O2, improving the catalytic activity of oxygen reduction reaction and oxygen evolution reaction. Moreover, compared to traditional inorganic semiconductor crystals, Fe-MOF exhibits large specific surface area and excellent O2 adsorption ability. Therefore, the LOB with Fe-MOF as the cathode exhibits large specific capacity, ultralow charge/discharge overpotential of 0.22 V at 0.05 mA cm-2 and excellent stability of 195 cycles under illumination. This study provides an environmentally friendly and highly efficient photocatalyst for LOBs, and a new strategy for designing photoelectrodes.

2.
Physiol Plant ; 176(4): e14461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105262

RESUMEN

Trichomes are known to be important biofactories that contribute to the production of secondary metabolites, such as terpenoids. C2H2-zinc finger proteins (C2H2-ZFPs) are vital transcription factors of plants' trichome development. However, little is known about the function of Artemisia annua C2H2-ZFPs in trichome development. To explore the roles of this gene family in trichome development, two C2H2-ZFP transcription factors, named AaZFP8L and AaGIS3, were identified; both are hormonally regulated in A. annua. Overexpression of AaZFP8L in tobacco led to a significant increase in the density and length of glandular trichomes, and improved terpenoid content. In contrast, AaGIS3 was found to positively regulate non-glandular trichome initiation and elongation, which reduces terpenoid accumulation. In addition, ABA contents significantly increased in AaZFP8L-overexpressing tobacco lines and AaZFP8L also can directly bind the promoter of the ABA biosynthesis genes. This study lays the foundation for further investigating A. annua C2H2-ZFPs in trichome development and terpenoid accumulation.


Asunto(s)
Artemisia annua , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Factores de Transcripción , Tricomas , Tricomas/metabolismo , Tricomas/crecimiento & desarrollo , Tricomas/genética , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisia annua/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Terpenos/metabolismo , Ácido Abscísico/metabolismo , Regiones Promotoras Genéticas/genética
3.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063054

RESUMEN

The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Giberelinas/metabolismo
4.
J Sci Food Agric ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822620

RESUMEN

BACKGROUND: Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS: In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION: Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.

5.
Food Chem ; 455: 139880, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852282

RESUMEN

Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 µmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to ß-sheet, and reducing amyloid-like cross-ß structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.


Asunto(s)
Flavonoides , Proteómica , Albúmina Sérica Bovina , Espectrometría de Fluorescencia , Flavonoides/química , Flavonoides/farmacología , Glicosilación/efectos de los fármacos , Albúmina Sérica Bovina/química , Bovinos , Animales , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo
6.
J Sci Food Agric ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855916

RESUMEN

BACKGROUND: Garlic is a promising source of antimicrobial peptide separation, and chemical modification is an effective method for activity improvement. The present study aimed to improve the antifungal activity of a peptide extracted from garlic. Chemical modifications were conducted, and the structure-activity relationship and antifungal mechanism were investigated. RESULTS: The results indicated that the cationic charge induced by Lys residue at the N-terminal was important for the antimicrobial activity, and the modified sequence exhibited significant antifungal activity with low mammalian toxicity and a low tendency of drug resistance (p < 0.05). The structure-activity relationship analysis revealed that the modified active peptide had a predominant α-helical structure and an inner cyclic correlation. Transcriptomic analysis showed that peptide KMLKKLFR (Lys-Met-Leu-Lys-Lyse-Leu-Phe-Arg) affected the rRNA processing and carbon metabolism process of Candida albicans. In addition, the membrane potential study indicated a non-membrane destruction mechanism, and molecular docking analysis and a DNA interaction assay suggested promising inner targets. CONCLUSION: The results of the present study indicate that chemical modification by amino acid substitution was effective for antimicrobial activity improvement. The present study would benefit future antimicrobial peptide development and suggests that garlic is a great source of antibacterial peptides and peptide template separations for coping with antibiotic resistance. © 2024 Society of Chemical Industry.

7.
BMC Cancer ; 24(1): 681, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834966

RESUMEN

BACKGROUND: Our previous studies have indicated that mRNA and protein levels of PPIH are significantly upregulated in Hepatocellular Carcinoma (LIHC) and could act as predictive biomarkers for patients with LIHC. Nonetheless, the expression and implications of PPIH in the etiology and progression of common solid tumors have yet to be explored, including its potential as a serum tumor marker. METHODS: We employed bioinformatics analyses, augmented with clinical sample evaluations, to investigate the mRNA and protein expression and gene regulation networks of PPIH in various solid tumors. We also assessed the association between PPIH expression and overall survival (OS) in cancer patients using Kaplan-Meier analysis with TCGA database information. Furthermore, we evaluated the feasibility and diagnostic efficacy of PPIH as a serum marker by integrating serological studies with established clinical tumor markers. RESULTS: Through pan-cancer analysis, we found that the expression levels of PPIH mRNA in multiple tumors were significantly different from those in normal tissues. This study is the first to report that PPIH mRNA and protein levels are markedly elevated in LIHC, Colon adenocarcinoma (COAD), and Breast cancer (BC), and are associated with a worse prognosis in these cancer patients. Conversely, serum PPIH levels are decreased in patients with these tumors (LIHC, COAD, BC, gastric cancer), and when combined with traditional tumor markers, offer enhanced sensitivity and specificity for diagnosis. CONCLUSION: Our findings propose that PPIH may serve as a valuable predictive biomarker in tumor patients, and its secreted protein could be a potential serum marker, providing insights into the role of PPIH in cancer development and progression.


Asunto(s)
Biomarcadores de Tumor , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Pronóstico , Femenino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/mortalidad , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/diagnóstico , Neoplasias/genética , Neoplasias/sangre , Neoplasias/mortalidad , Neoplasias/diagnóstico , Masculino , Biología Computacional/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estimación de Kaplan-Meier , Neoplasias de la Mama/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/sangre , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Neoplasias del Colon/genética , Neoplasias del Colon/sangre , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Redes Reguladoras de Genes
8.
Front Psychiatry ; 15: 1388946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812484

RESUMEN

Mounting evidence has identified the rapid and sustained antidepressive and anxiolytic-like effects of esketamine. However, the underlying mechanism of this no-monoamine target rapid-onset antidepressant is still underexplored. Immune-inflammatory pathways and cell-mediated immune activation, mainly including inflammatory cytokines in plasma, play a pivotal role in the pathogenesis of major depressive disorder and are also a potential therapeutic target for MDD. The current study was designed to clarify the role of esketamine on the expression of plasma cytokines in a depressive-like model introduced by chronic variable stress (CVS). In this study, a 21-day consecutive CVS protocol was applied to produce depressive- and anxiety-like behaviors. After the single dose or 7-day repeated administration of esketamine or fluoxetine, the depressive- and anxiety-like behaviors and the expression of inflammatory cytokines in plasma were examined. Both a single dose of esketamine and 7-days repeated fluoxetine administration elicited anti-depressive and anxiolytic effects in mice exposed to CVS. Additionally, CVS produced significant changes in the plasma inflammatory factors, notably increasing the expression of IL-1ß, IL-6, IL-8, IL-17A, TNFα, IL-4, IL-9, IL-24, IL-37, IFN-ß, and CXCL12, while reducing IL-10 and IL-33. With the administration of esketamine and fluoxetine, CVS-produced inflammatory disturbances were partially normalized. Together, our findings provide a novel insight that acute esketamine treatment could rescue CVS-produced depressive-like and anxiety-like behaviors in mice by normalizing the expression of inflammatory cytokines; this effect was similar to the repeated administration of fluoxetine. These results contributed to the understating of rapid anti-depressant effects elicited by esketamine.

9.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38675416

RESUMEN

Diabetes mellitus (DM) is a common chronic metabolic disease worldwide. The disturbance of the gut microbiota has a complex influence on the development of DM. Polysaccharides are one type of the most important natural components with anti-diabetic effects. Gut microbiota can participate in the fermentation of polysaccharides, and through this, polysaccharides regulate the gut microbiota and improve DM. This review begins by a summary of the sources, anti-diabetic effects and the gut microbiota regulation functions of natural polysaccharides. Then, the mechanisms of polysaccharides in regulating the gut microbiota to exert anti-diabetic effects and the structure-activity relationship are summarized. It is found that polysaccharides from plants, fungi, and marine organisms show great hypoglycemic activities and the gut microbiota regulation functions. The mechanisms mainly include repairing the gut burrier, reshaping gut microbiota composition, changing the metabolites, regulating anti-inflammatory activity and immune function, and regulating the signal pathways. Structural characteristics of polysaccharides, such as monosaccharide composition, molecular weight, and type of glycosidic linkage, show great influence on the anti-diabetic activity of polysaccharides. This review provides a reference for the exploration and development of the anti-diabetic effects of polysaccharides.

10.
iScience ; 27(5): 109599, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646178

RESUMEN

Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.

11.
BMC Psychiatry ; 24(1): 262, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594695

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is a profound mental disorder with a multifactorial etiology, including genetics, environmental factors, and demographic influences such as ethnicity and geography. Among these, the studies of SCZ also shows racial and regional differences. METHODS: We first established a database of biological samples for SCZ in China's ethnic minorities, followed by a serum metabolomic analysis of SCZ patients from various ethnic groups within the same region using the LC-HRMS platform. RESULTS: Analysis identified 47 metabolites associated with SCZ, with 46 showing significant differences between Miao and Han SCZ patients. These metabolites, primarily fatty acids, amino acids, benzene, and derivatives, are involved in fatty acid metabolism pathways. Notably, L-Carnitine, L-Cystine, Aspartylphenylalanine, and Methionine sulfoxide demonstrated greater diagnostic efficacy in Miao SCZ patients compared to Han SCZ patients. CONCLUSION: Preliminary findings suggest that there are differences in metabolic levels among SCZ patients of different ethnicities in the same region, offering insights for developing objective diagnostic or therapeutic monitoring strategies that incorporate ethnic considerations of SCZ.


Asunto(s)
Esquizofrenia , Humanos , Pueblo Asiatico/etnología , China , Minorías Étnicas y Raciales , Etnicidad , Predisposición Genética a la Enfermedad , Esquizofrenia/diagnóstico , Esquizofrenia/etnología , Esquizofrenia/metabolismo
12.
Phytomedicine ; 128: 155528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555774

RESUMEN

BACKGROUND: Obesity and hyperlipidemia can induce a variety of diseases, and have become major health problems worldwide. How to effectively prevent and control obesity has become one of the hot-spots of contemporary research. Mulberry leaf is the dried leaf of Morus alba L., which is approved by the Ministry of Health as a "homology of medicine and food", rich in diverse active constituents and with a variety of health effects including anti-obesity and anti-hyperlipidemia activities. PURPOSE: The review attempts to summarize and provide the molecular basis, mechanism, safety and products for further exploration and application of mulberry leaf on the treatment on the control of weight gain and obesity. METHODS: This review is conducted by using ScienceDirect, PubMed, CNKI and Web of Science databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS: Based on the research progress of domestic and foreign scholars, the effective phytochemicals, molecular mechanisms and product applications of mulberry leaf in the prevention and treatment of obesity and related metabolic diseases were summarized. CONCLUSION: Mulberry leaf has excellent medicinal and health care value in obesity treatment. However, its pharmacodynamic substance basis and molecular mechanisms need to be further studied.


Asunto(s)
Fármacos Antiobesidad , Morus , Obesidad , Fitoquímicos , Hojas de la Planta , Morus/química , Hojas de la Planta/química , Obesidad/tratamiento farmacológico , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoterapia
13.
J Inflamm Res ; 17: 1467-1480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476468

RESUMEN

Background: Bronchopulmonary dysplasia (BPD) has become a major cause of morbidity and mortality in preterm infants worldwide, yet its pathogenesis and underlying mechanisms remain poorly understood. The present study sought to explore microRNA-mRNA regulatory networks and immune cells involvement in BPD through a combination of bioinformatic analysis and experimental validation. Methods: MicroRNA and mRNA microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed microRNAs (DEMs) were identified in BPD patients compared to control subjects, and their target genes were predicted using miRWalk, miRNet, miRDB, and TargetScan databases. Subsequently, protein-protein interaction (PPI) and functional enrichment analyses were conducted on the target genes. 30 hub genes were screened using the Cytohubba plugin of the Cytoscape software. Additionally, mRNA microarray data was utilized to validate the expression of hub genes and to perform immune infiltration analysis. Finally, real-time PCR (RT-PCR), immunohistochemistry (IHC), and flow cytometry were conducted using a mouse model of BPD to confirm the bioinformatics findings. Results: Two DEMs (miR-15b-5p and miR-20a-5p) targeting genes primarily involved in the regulation of cell cycle phase transition, ubiquitin ligase complex, protein serine/threonine kinase activity, and MAPK signaling pathway were identified. APP and four autophagy-related genes (DLC1, PARP1, NLRC4, and NRG1) were differentially expressed in the mRNA microarray dataset. Analysis of immune infiltration revealed significant differences in levels of neutrophils and naive B cells between BPD patients and control subjects. RT-PCR and IHC confirmed reduced expression of APP in a mouse model of BPD. Although the proportion of total neutrophils did not change appreciably, the activation of neutrophils, marked by loss of CD62L, was significantly increased in BPD mice. Conclusion: Downregulation of APP mediated by miR-15b-5p and miR-20a-5p may be associated with the development of BPD. Additionally, increased CD62L- neutrophil subset might be important for the immune-mediated injury in BPD.

14.
Virulence ; 15(1): 2327096, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38466143

RESUMEN

Legionella pneumophila (L. pneumophila) is a prevalent pathogenic bacterium responsible for significant global health concerns. Nonetheless, the precise pathogenic mechanisms of L. pneumophila have still remained elusive. Autophagy, a direct cellular response to L. pneumophila infection and other pathogens, involves the recognition and degradation of these invaders in lysosomes. Histone deacetylase 6 (HDAC6), a distinctive member of the histone deacetylase family, plays a multifaceted role in autophagy regulation. This study aimed to investigate the role of HDAC6 in macrophage autophagy via the autophagolysosomal pathway, leading to alleviate L. pneumophila-induced pneumonia. The results revealed a substantial upregulation of HDAC6 expression level in murine lung tissues infected by L. pneumophila. Notably, mice lacking HDAC6 exhibited a protective response against L. pneumophila-induced pulmonary tissue inflammation, which was characterized by the reduced bacterial load and diminished release of pro-inflammatory cytokines. Transcriptomic analysis has shed light on the regulatory role of HDAC6 in L. pneumophila infection in mice, particularly through the autophagy pathway of macrophages. Validation using L. pneumophila-induced macrophages from mice with HDAC6 gene knockout demonstrated a decrease in cellular bacterial load, activation of the autophagolysosomal pathway, and enhancement of cellular autophagic flux. In summary, the findings indicated that HDAC6 knockout could lead to the upregulation of p-ULK1 expression level, promoting the autophagy-lysosomal pathway, increasing autophagic flux, and ultimately strengthening the bactericidal capacity of macrophages. This contributes to the alleviation of L. pneumophila-induced pneumonia.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Neumonía , Animales , Ratones , Autofagia , Histona Desacetilasa 6/genética , Legionella pneumophila/genética , Enfermedad de los Legionarios/genética , Macrófagos
15.
Xenobiotica ; 54(4): 195-200, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385556

RESUMEN

To assess the effect of Rehmannioside A on CYP450s activity and to estimate its inhibitory properties.The effect of Rehmannioside A on the activity of major CYP450s in human liver microsomes (HLMs) was assessed with the corresponding substrates and marker reactions, and compared with a blank control and the respective inhibitors. Suppression of CYP3A4, 2C9 and 2D6 was assessed by the dose-dependent assay and fitted with non-competitive or competitive inhibition models. The inhibition of CYP3A4 was determined in a time-dependent manner.Rehmannioside A suppressed the activity of CYP3A4, 2C9, and 2D6 with IC50 values of 10.08, 12.62, and 16.43 µM, respectively. Suppression of CYP3A4 was fitted to a non-competitive model with Ki value of 5.08 µM, whereas CYP2C9 and 2D6 were fitted to a competitive model with Ki values of 6.25 and 8.14 µM. Additionally, the inhibitory effect on CYP3A4 was time-dependent with KI value of 8.47 µM-1 and a Kinact of 0.048 min-1.In vitro suppression of CYP3A, 2C9 and 2D6 by Rehmannioside A indicated that Rehmannioside A or its source herbs may interact with drugs metabolised by these CYP450s, which could guide the clinical application.


Asunto(s)
Citocromo P-450 CYP3A , Microsomas Hepáticos , Humanos , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP2D6/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología
16.
Trials ; 25(1): 134, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383418

RESUMEN

BACKGROUND: Emotional blunting is a symptom that has always been present in depressed patients. Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective supplementary therapy for treating depression. However, the effectiveness and brain imaging processes of functional magnetic resonance imaging-guided personalized rTMS (fMRI-rTMS) in the treatment of depression with emotional blunting have not been observed in randomized controlled trials. METHODS: This study is a randomized, controlled, double-blind, and single-center clinical trial in which 80 eligible depressed patients with emotional blunting will be randomly assigned to two groups: a functional magnetic resonance imaging-guided personalized rTMS (fMRI-rTMS) group and a control group. Individuals in the fMRI-rTMS group (n = 40) will receive high-frequency rTMS (10 Hz, 120% MT). The main target of stimulation will be the area most relevant to the functional connectivity of the right medial prefrontal cortex (mPFC) and amygdala. The control group (n = 40) will receive sham stimulation, with a coil flipped to 90 degrees relative to the vertical scalp. All patients will receive 15 consecutive days of treatment, with each session lasting half an hour per day, followed by 8 weeks of follow-up. The primary outcome is the comparison of Oxford Depression Questionnaire (ODQ) scores between these two groups at different time points. The secondary outcomes include evaluating other clinical scales and assessing the differences in brain imaging changes between the two groups before and after treatment. DISCUSSION: This trial aims to examine the effects of functional magnetic resonance imaging-guided personalized rTMS (fMRI-rTMS) intervention on depressed patients experiencing emotional blunting and to elucidate the potential mechanism behind it. The results will provide new evidence for using fMRI-rTMS in treating depression with emotional blunting in the future. TRIAL REGISTRATION: ClinicalTrials.gov INCT05555940. Registered on 13 September 2022 at http://clinicaltrials.gov .


Asunto(s)
Depresión , Estimulación Magnética Transcraneal , Humanos , Encéfalo/diagnóstico por imagen , Método Doble Ciego , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Depresión/terapia
17.
Pak J Med Sci ; 40(1Part-I): 174-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196469

RESUMEN

Objective: To identify the association between the changes in intestinal microflora and renal function in patients with chronic renal failure (CRF). Methods: This retrospective case-control study included 50 patients with CRF (study group), admitted to the Clinical Laboratory Department of Shenzhen People's Hospital from March 2021 to May 2022, and 50 healthy individuals (control group). The association between the distribution of intestinal microflora and the glomerular filtration rate (GFR), levels of serum creatinine (SCr), blood urea nitrogen (BUN), and serum cystatin C (CysC) were analyzed. Results: Intestinal microflora of CRF patients had significantly higher levels of Enterococci compared to the control group (p-Value <0.05), while the levels of Bifidobacterium spp. and Escherichia coli were lower in the study group (p-Value <0.05). GFR was lower, and the levels of BUN, SCr, and CysC were higher in the study group compared to the control group (all p-Value <0.05). GFR, BUN, SCr and CysC levels in the study group negatively correlated with the levels of Bifidobacterium spp. and Lactobacillus spp. (r<0, P<0.05), and positively correlated with the abundance of Enterococcus spp. and Escherichia coli (r>0, P<0.05) in the intestinal microflora. Conclusions: Changes in intestinal microbiota are associated with a significant decrease in GFR and a marked increase in serum levels of renal function indicators, and alterations in the balance of intestinal microbiota may lead to further aggravation of the renal function damage in patients with CRF.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38275033

RESUMEN

BACKGROUND: Mass spectrometry imaging (MSI) is an imaging method based on mass spectrometry technology that can simultaneously visualize the spatial distribution of various biological molecules. The use of MSI in cancer detection and drug discovery has been extensively investigated in recent years. OBJECTIVE: This review aims to summarize the latest advances of MSI and its specific applications in cancer detection and drug discovery, providing a basic understanding of the development and application of MSI in the past five years and offering references for the further application of MSI in cancer detection and drug discovery. METHODS: In the database, "mass spectrometry imaging", "cancer treatment", and "drug discovery" were used as keywords for literature retrieval, and the time range was limited to "2018- 2023". After organizing and analyzing the literature and patents, a review was conducted. RESULTS: Based on the literature, it was found that the updated progress of MSI in the past five years mostly focused on concrete methods, operation procedures, facilities, and composite applications. The patents of MSI were mainly correlated with the mass spectrometry imaging system and its application in cancer treatment. MSI is conducive to investigating the therapeutic schedule of cancer and searching for new drugs. CONCLUSION: MSI is a convenient, fast and powerful technology that has made great progress in sample preparation, instrumentation, quantitation, and multimodal imaging. MSI has emerged as a powerful technique in various biomedical applications, which has strong potential in cancer detection, treatment, formation mechanism research, discovery of biomarkers, and drug discovery process.

20.
Reprod Biol Endocrinol ; 22(1): 11, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212789

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is the main cause of anovulatory infertility in women of reproductive age, and low-grade chronic inflammation plays a key role in the occurrence and development of PCOS. However, obesity, as a likely confounding factor, can affect the inflammatory state of PCOS patients. OBJECTIVE: The aim of this study was to comprehensively investigate intra-ovarian inflammatory states and their impact on embryo quality in PCOS patients with a normal BMI undergoing IVF treatment. METHODS: DIA-mass spectrometry-based proteomics and bioinformatic analysis were combined to comprehensively profile the protein expression of granulosa cells (GCs) from 5 normal-BMI PCOS patients and 5 controls. Thirty-four cytokines were further systematically detected in follicular fluid (FF) from 32 age- and BMI-matched normal-BMI patients using Luminex liquid chip suspension technology. Next, the differentially expressed cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA) in 24 newly recruited subjects, and the relationship between these cytokines and embryo quality in PCOS patients was analysed. Finally, these cytokine levels were compared and evaluated in PCOS patients with different androgen levels. RESULTS: Proteomic analysis showed that the suppression of substance metabolism and steroid biosynthesis, more interestingly, resulted in an enhanced immune and inflammatory response in the GCs of normal-BMI PCOS patients and prompted the involvement of cytokines in this process. Luminex analysis further showed that FF macrophage inflammatory protein-1 beta (MIP-1ß) and stromal cell-derived factor-1 alpha (SDF-1α) levels were significantly increased in normal-BMI PCOS patients compared to controls (P = 0.005; P = 0.035, respectively), and the ELISA results were consistent with these findings. Besides, FF MIP-1ß showed an inverse correlation with the number of D3 good-quality embryos and the good-quality blastocyst rate in patients with PCOS (P = 0.006; P = 0.003, respectively), which remained significant after correction for multiple comparisons. Moreover, SDF-1α levels had no relationship with embryo development in PCOS patients. Additionally, SDF-1α levels were significantly lower in PCOS patients with high androgen levels than in controls (P = 0.031). CONCLUSIONS: Local ovarian inflammation was present in normal-BMI PCOS patients, affecting follicular development, and FF MIP-1ß may be a potential biomarker associated with embryo quality in normal-BMI PCOS patients.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Quimiocina CCL4/metabolismo , Quimiocina CXCL12/metabolismo , Proteómica , Andrógenos/metabolismo , Índice de Masa Corporal , Líquido Folicular/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Fertilización In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...