Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Patient Prefer Adherence ; 18: 1217-1230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895637

RESUMEN

Purpose: Understanding the quality of life and the factors that influence it for patients with short bowel syndrome (SBS) and their caregivers is of utmost importance in order to enhance their well-being. Therefore, This study aimed to provide a comprehensive understanding of the impact of SBS on patients and their caregivers, as well as its associated factors, by synthesizing the available evidence. Methods: A systematic review of the literature was done using PubMed, Embase databases, CNKI, and ISPOR conference papers. Included articles were manually searched to identify any other relevant studies. Quality was assessed using appropriate Joanna Briggs Institute critical appraisal tools. Results: This review included 16 studies, comprising 15 observational studies and 1 randomized controlled trial. The findings revealed that the QoL of patients with SBS was lower than that of the general population regarding physical functioning and psychological domain. Meanwhile, caregivers experienced challenges in maintaining their QoL. The QoL of SBS patients was found to be influenced by various factors such as treatment, age, sex, stoma, and small intestine length. Among them, the treatment is the most noteworthy factor that can be effectively improved through external interventions. Conclusion: While numerous studies have provided insights into the compromised QoL experienced by individuals with SBS and their caregivers, there remains a scarcity of large-sample quantitative investigations examining the determinants of QoL. The existing body of literature on caregivers is also notably deficient.

2.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869533

RESUMEN

In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10-11 A vs. 1.66 × 10-12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = -10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V).

3.
Adv Healthc Mater ; : e2401296, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794971

RESUMEN

Hydrogels are well-suited for biomedical applications due to their numerous advantages, such as excellent bioactivity, versatile physical and chemical properties, and effective drug delivery capabilities. Recently, hydrogel coatings have developed to functionalize bone implants which are biologically inert and cannot withstand the complex bone tissue repair microenvironment. These coatings have shown promise in addressing unique and pressing medical needs. This review begins with the major functionalized performance and interfacial bonding strategy of hydrogel coatings, with a focus on the novel external field response properties of the hydrogel. Recent advances in the fabrication strategies of hydrogel coatings and their use in the treatment of pathologic bone regeneration are highlighted. Finally, challenges and emerging trends in the evolution and application of physiological environment-responsive and external electric field-responsive hydrogel coatings for bone implants are discussed.

4.
Cell Rep Med ; 5(4): 101514, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631286

RESUMEN

Here, we present 3 different perspectives on how the microbiome has impacted cancer patients, treatment, and clinical studies. We hear about the challenges of implementing microbiome analyses into the clinics, the impact these analyses might have on patients' care, and treatment in the future, specifically for gastric cancer treatment. These are a few of the many voices that are highlighting the role of the microbiome in cancer development, treatment, and clinical outcomes.


Asunto(s)
Microbiota , Neoplasias Gástricas , Humanos , Inmunoterapia
5.
Gut Microbes ; 16(1): 2328868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38485702

RESUMEN

The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Humanos , Hongos/genética , Carcinogénesis , Transformación Celular Neoplásica
6.
Cell Host Microbe ; 32(4): 489-505.e5, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38513657

RESUMEN

Immunotherapy has revolutionized cancer treatment, but inconsistent responses persist. Our study delves into the intriguing phenomenon of enhanced immunotherapy sensitivity in older individuals with cancers. Through a meta-analysis encompassing 25 small-to-mid-sized trials of immune checkpoint blockade (ICB), we demonstrate that older individuals exhibit heightened responsiveness to ICB therapy. To understand the underlying mechanism, we reanalyze single-cell RNA sequencing (scRNA-seq) data from multiple studies and unveil distinct upregulation of exhausted and cytotoxic T cell markers within the tumor microenvironment (TME) of older patients. Recognizing the potential role of gut microbiota in modulating the efficacy of immunotherapy, we identify an aging-enriched enterotype linked to improved immunotherapy outcomes in older patients. Fecal microbiota transplantation experiments in mice confirm the therapeutic potential of the aging-enriched enterotype, enhancing treatment sensitivity and reshaping the TME. Our discoveries confront the prevailing paradox and provide encouraging paths for tailoring cancer immunotherapy strategies according to an individual's gut microbiome profile.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Anciano , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Envejecimiento , Complejo CD3
7.
Colloids Surf B Biointerfaces ; 235: 113748, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38306804

RESUMEN

The long-term durability of the implant is influenced by two significant clinical challenges, namely bacterial infection and fixation loosening. Conventional implant materials have failed to meet the demands of the dynamic process of infectious bone repair, which necessitates early-stage bacterial sterilization and a conducive environment for late-stage osteogenesis. Consequently, there is an urgent requirement for an implant material that can sequentially regulate antibacterial properties and promote osteogenesis. The study aimed to develop a micropatterned graphene oxide nanocomposite on titanium implant (M-NTO/GO) for the sequential management of bacterial infection and osteogenic promotion. M-NTO/GO exhibited a micropattern nanostructure surface and demonstrated responsiveness to near-infrared (NIR) light. Upon NIR light irradiation, M-NTO/GO exhibited effective antibacterial properties, achieving antibacterial rates of 96.9% and 98.6% against E. coli and S. aureus, respectively. Under no-light condition, the micropatterned topography of M-NTO/GO exhibited the ability to induce directed cell growth, enhance cell adhesion and spreading, and facilitate osteogenic differentiation. These findings suggest the successful development of a functionalized micropatterned nanocomposite implant capable of sequentially regulating antibacterial and osteogenesis activity. Consequently, this highly effective strategy holds promise for expanding the potential applications of orthopedic implants.


Asunto(s)
Infecciones Bacterianas , Nanocompuestos , Humanos , Osteogénesis , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química , Titanio/farmacología , Titanio/química , Propiedades de Superficie
8.
Genome Med ; 16(1): 16, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243343

RESUMEN

BACKGROUND: The impact of the gut microbiome on the initiation and intensity of immune-related adverse events (irAEs) prompted by immune checkpoint inhibitors (ICIs) is widely acknowledged. Nevertheless, there is inconsistency in the gut microbial associations with irAEs reported across various studies. METHODS: We performed a comprehensive analysis leveraging a dataset that included published microbiome data (n = 317) and in-house generated data from 16S rRNA and shotgun metagenome samples of irAEs (n = 115). We utilized a machine learning-based approach, specifically the Random Forest (RF) algorithm, to construct a microbiome-based classifier capable of distinguishing between non-irAEs and irAEs. Additionally, we conducted a comprehensive analysis, integrating transcriptome and metagenome profiling, to explore potential underlying mechanisms. RESULTS: We identified specific microbial species capable of distinguishing between patients experiencing irAEs and non-irAEs. The RF classifier, developed using 14 microbial features, demonstrated robust discriminatory power between non-irAEs and irAEs (AUC = 0.88). Moreover, the predictive score from our classifier exhibited significant discriminative capability for identifying non-irAEs in two independent cohorts. Our functional analysis revealed that the altered microbiome in non-irAEs was characterized by an increased menaquinone biosynthesis, accompanied by elevated expression of rate-limiting enzymes menH and menC. Targeted metabolomics analysis further highlighted a notably higher abundance of menaquinone in the serum of patients who did not develop irAEs compared to the irAEs group. CONCLUSIONS: Our study underscores the potential of microbial biomarkers for predicting the onset of irAEs and highlights menaquinone, a metabolite derived from the microbiome community, as a possible selective therapeutic agent for modulating the occurrence of irAEs.


Asunto(s)
Antineoplásicos Inmunológicos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Microbioma Gastrointestinal , Enfermedades del Sistema Inmune , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , ARN Ribosómico 16S/genética , Vitamina K 2/uso terapéutico , Inmunoterapia/efectos adversos , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológico
9.
STAR Protoc ; 5(1): 102847, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277270

RESUMEN

Identifying fungal profiles from metagenomes is challenging due to an incomplete fungal database and limitations in the understanding of software. Here, we describe a protocol for analyzing the fecal metagenome of cancer patients prior to immunotherapy. We describe steps for raw metagenomic sequencing data retrieval, human genome and contaminants elimination, and assigning taxonomy labels to fungal reads. We then detail measures for assessing fungal alpha diversity and beta diversity, along with differential analysis. For complete details on the use and execution of this protocol, please refer to Xiaowen Huang et al.1.


Asunto(s)
Metagenoma , Neoplasias , Humanos , Metagenoma/genética , Inmunoterapia , Bases de Datos Factuales , Heces , Genoma Humano , Neoplasias/genética , Neoplasias/terapia
10.
RSC Adv ; 14(6): 3841-3844, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38274174

RESUMEN

This study investigated fluorescence photobleaching and the recovery of fluorescein sodium (FS)-loaded carbomer films. To mitigate errors caused by the self-quenching effect, the experiments were conducted at FS concentrations of 0.1, 0.5, and 1 wt%. The results revealed a nonlinear relationship between fluorescence intensity and FS concentration (0.1-1 wt%). Moreover, the degree and rate of photobleaching increased with FS concentration. The recovery level and recovery rate exhibited contrasting relationships with FS concentration. Higher FS concentrations were associated with a longer recovery time, which can be attributed to the prolonged irradiation, resulting in a bleached region that was larger than the initially irradiated area.

11.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166941, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37926361

RESUMEN

OBJECTIVE: Branched-chain amino acid (BCAA) metabolism is involved in the development of colorectal cancer (CRC); however, the underlying mechanism remains unclear. Therefore, this study investigates the role of BCAA metabolism in CRC progression. METHODS: Dietary BCAA was administered to both azoxymethane-induced and azoxymethane/dextran sodium sulfate-induced CRC mouse models. The expression of genes related to BCAA metabolism was determined using RNA sequencing. Adjacent tissue samples, obtained from 58 patients with CRC, were subjected to quantitative real-time PCR and immunohistochemical analysis. Moreover, the suppressive role of branched-chain aminotransferase 2 (BCAT2) in cell proliferation, apoptosis, and xenograft mouse models was investigated. Alterations in BCAAs and activation of downstream pathways were also assessed using metabolic analysis and western blotting. RESULTS: High levels of dietary BCAA intake promoted CRC tumorigenesis in chemical-induced CRC and xenograft mouse models. Both the mRNA and protein levels of BCAT2 were decreased in tumor tissues of patients with CRC compared to those in normal tissues. Proliferation assays and xenograft models confirmed the suppressive role of BCAT2 in CRC progression. Furthermore, the accumulation of BCAAs caused by BCAT2 deficiency facilitated the chronic activation of mTORC1, thereby mediating the oncogenic effect of BCAAs. CONCLUSION: BCAT2 deficiency promotes CRC progression through inhibition of BCAAs metabolism and chronic activation of mTORC1.


Asunto(s)
Neoplasias Colorrectales , Proteínas Gestacionales , Humanos , Ratones , Animales , Aminoácidos de Cadena Ramificada/metabolismo , ARN Mensajero , Diana Mecanicista del Complejo 1 de la Rapamicina , Azoximetano , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Transaminasas/genética , Transaminasas/metabolismo , Proteínas Gestacionales/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo
12.
Gut ; 73(2): 268-281, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37734910

RESUMEN

BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Ratones , Colitis Ulcerosa/metabolismo , ARN Ribosómico 16S/metabolismo , Mucosa Intestinal/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colon/metabolismo , Esfingolípidos/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
13.
Nat Commun ; 14(1): 7135, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932270

RESUMEN

The perturbations of the gut microbiota and metabolites are closely associated with the progression of inflammatory bowel disease (IBD). However, inconsistent findings across studies impede a comprehensive understanding of their roles in IBD and their potential as reliable diagnostic biomarkers. To address this challenge, here we comprehensively analyze 9 metagenomic and 4 metabolomics cohorts of IBD from different populations. Through cross-cohort integrative analysis (CCIA), we identify a consistent characteristic of commensal gut microbiota. Especially, three bacteria, namely Asaccharobacter celatus, Gemmiger formicilis, and Erysipelatoclostridium ramosum, which are rarely reported in IBD. Metagenomic functional analysis reveals that essential gene of Two-component system pathway, linked to fecal calprotectin, are implicated in IBD. Metabolomics analysis shows 36 identified metabolites with significant differences, while the roles of these metabolites in IBD are still unknown. To further elucidate the relationship between gut microbiota and metabolites, we construct multi-omics biological correlation (MOBC) maps, which highlights gut microbial biotransformation deficiencies and significant alterations in aminoacyl-tRNA synthetases. Finally, we identify multi-omics biomarkers for IBD diagnosis, validated across multiple global cohorts (AUROC values ranging from 0.92 to 0.98). Our results offer valuable insights and a significant resource for developing mechanistic hypotheses on host-microbiome interactions in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Multiómica , Enfermedades Inflamatorias del Intestino/metabolismo , Metaboloma , Biomarcadores/metabolismo
14.
Cell Host Microbe ; 31(11): 1930-1943.e4, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37944495

RESUMEN

The effect of gut bacteria on the response to immune checkpoint inhibitors (ICIs) has been studied, but the relationship between fungi and ICI responses is not fully understood. Herein, 862 fecal metagenomes from 9 different cohorts were integrated for the identification of differentially abundant fungi and subsequent construction of random forest (RF) models to predict ICI responses. Fungal markers demonstrate excellent performance, with an average area under the curve (AUC) of 0.87. Their performance improves even further, reaching an average AUC of 0.89 when combined with bacterial markers. Higher enrichment of exhausted T cells is detected in responders, as predicted by fungal markers. Multi-kingdom network and functional analysis reveal that the fungus Schizosaccharomyces octosporus may ferment starch into short-chain fatty acids in responders. This study provides a fungal profile of the ICI response and the identification of multi-kingdom microbial markers with good performance that may improve the overall applicability of ICI therapy.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Metagenoma , Inmunoterapia , Bacterias/genética , Neoplasias/terapia
15.
Cancer Imaging ; 23(1): 74, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537659

RESUMEN

BACKGROUND: Our study aimed to explore the potential of radiomics features derived from CT images in predicting the prognosis and response to adjuvant chemotherapy (ACT) in patients with Stage II colorectal cancer (CRC). METHODS: A total of 478 patients with confirmed stage II CRC, with 313 from Shanghai (Training set) and 165 from Beijing (Validation set) were enrolled. Optimized features were selected using GridSearchCV and Iterative Feature Elimination (IFE) algorithm. Subsequently, we developed an ensemble random forest classifier to predict the probability of disease relapse.We evaluated the performance of the model using the concordance index (C-index), precision-recall curves, and area under the precision-recall curves (AUCPR). RESULTS: A radiomic model (namely the RF5 model) consisting of four radiomics features and T stage were developed. The RF5 model performed better than simple radiomics features or T stage alone, with higher C-index and AUCPR, as well as better sensitivity and specificity (C-indexRF5: 0.836; AUCPR = 0.711; Sensitivity = 0.610; Specificity = 0.935). We identified an optimal cutoff value of 0.1215 to split patients into high- or low-score subgroups, with those in the low-score group having better disease-free survival (DFS) (Training Set: P = 1.4e-11; Validation Set: P = 0.015). Furthermore, patients in the high-score group who received ACT had better DFS compared to those who did not receive ACT (P = 0.04). However, no statistical difference was found in low-score patients (P = 0.17). CONCLUSION: The radiomic model can serve as a reliable tool for assessing prognosis and identifying the optimal candidates for ACT in Stage II CRC patients. TRIAL REGISTRATION: Retrospectively registered.


Asunto(s)
Neoplasias Colorrectales , Humanos , Supervivencia sin Enfermedad , China , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Aprendizaje Automático , Quimioterapia Adyuvante , Estudios Retrospectivos
16.
Cancer Res ; 83(22): 3710-3725, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37602831

RESUMEN

Immune checkpoint inhibitors (ICI) have revolutionized cancer therapy; however, their application is limited by the occurrence of immune-related adverse events. The gut microbiota plays important roles in the response to and toxicity of immunotherapy and Faecalibacterium prausnitzii (F. prausnitzii) has been shown to possess immunomodulatory potential. Here, we found that patients receiving ICIs who developed colitis had a lower abundance of F. prausnitzii. In vivo, immunocompetent mice administered with dextran sodium sulfate and immunodeficient NSG mice with human peripheral blood mononuclear cell transfer were treated with ICIs to study ICI-induced colitis. Dual CTLA4 and PD-1 blockade exacerbated autoimmune colitis, activated an inflammatory response, and promoted myeloid cell infiltration, with higher percentages of macrophages, dendritic cells, monocytes, and neutrophils. F. prausnitzii administration mitigated the exacerbated colitis induced by ICIs. Concomitantly, F. prausnitzii enhanced the antitumor immunity elicited by ICIs in tumor-bearing mice while abrogating colitis. In addition, administration of F. prausnitzii increased gut microbial alpha diversity and modulated the microbial composition, increasing a subset of gut probiotics and decreasing potential gut pathogens. F. prausnitzii abundance was reduced in mice that developed ICI-associated colitis. Together, this study shows that F. prausnitzii administration ameliorates ICI-induced colitis, reshapes the gut microbial composition, and enhances the antitumor activity of immunotherapy. SIGNIFICANCE: F. prausnitzii alleviates colitis while enhancing the tumor-suppressive effects of immune checkpoint blockade, indicating that supplementation with F. prausnitzii could be a treatment strategy to mitigate immunotherapy toxicity in patients with cancer.


Asunto(s)
Colitis , Neoplasias , Humanos , Ratones , Animales , Faecalibacterium prausnitzii , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares , Antígeno CTLA-4 , Colitis/inducido químicamente
17.
Cell Rep Med ; 4(8): 101153, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586320

RESUMEN

Azathioprine (AZA) therapy failure, though not the primary cause, contributes to disease relapse and progression in inflammatory bowel disease (IBD). However, the role of gut microbiota in AZA therapy failure remains poorly understood. We found a high prevalence of Blautia wexlerae in patients with IBD with AZA therapy failure, associated with shorter disease flare survival time. Colonization of B. wexlerae increased inflammatory macrophages and compromised AZA's therapeutic efficacy in mice with intestinal colitis. B. wexlerae colonization reduced 6-mercaptopurine (6-MP) bioavailability by enhancing selenium-dependent xanthine dehydrogenase (sd-XDH) activity. The enzyme sd-XDH converts 6-MP into its inactive metabolite, 6-thioxanthine (6-TX), thereby impairing its ability to inhibit inflammation in mice. Supplementation with Bacillus (B.) subtilis enriched in hypoxanthine phosphoribosyltransferase (HPRT) effectively mitigated B. wexlerae-induced AZA treatment failure in mice with intestinal colitis. These findings emphasize the need for tailored management strategies based on B. wexlerae levels in patients with IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Mercaptopurina/uso terapéutico , Azatioprina/uso terapéutico , Inmunosupresores/uso terapéutico , Disponibilidad Biológica , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Bacterias
18.
Cell Host Microbe ; 31(5): 781-797.e9, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37130518

RESUMEN

Immune checkpoint blockade therapy with anti-PD-1 monoclonal antibody (mAb) is a treatment for colorectal cancer (CRC). However, some patients remain unresponsive to PD-1 blockade. The gut microbiota has been linked to immunotherapy resistance through unclear mechanisms. We found that patients with metastatic CRC who fail to respond to immunotherapy had a greater abundance of Fusobacterium nucleatum and increased succinic acid. Fecal microbiota transfer from responders with low F. nucleatum, but not F. nucleatum-high non-responders, conferred sensitivity to anti-PD-1 mAb in mice. Mechanistically, F. nucleatum-derived succinic acid suppressed the cGAS-interferon-ß pathway, consequently dampening the antitumor response by limiting CD8+ T cell trafficking to the tumor microenvironment (TME) in vivo. Treatment with the antibiotic metronidazole reduced intestinal F. nucleatum abundance, thereby decreasing serum succinic acid levels and resensitizing tumors to immunotherapy in vivo. These findings indicate that F. nucleatum and succinic acid induce tumor resistance to immunotherapy, offering insights into microbiota-metabolite-immune crosstalk in CRC.


Asunto(s)
Neoplasias Colorrectales , Infecciones por Fusobacterium , Animales , Ratones , Fusobacterium nucleatum , Neoplasias Colorrectales/tratamiento farmacológico , Ácido Succínico , Infecciones por Fusobacterium/microbiología , Inmunoterapia , Microambiente Tumoral
19.
Cancers (Basel) ; 15(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37173894

RESUMEN

BACKGROUND: Nicotinamide mononucleotide (NMN) is the physiological circulating NAD precursor thought to elevate the cellular level of NAD+ and to ameliorate various age-related diseases. An inseparable link exists between aging and tumorigenesis, especially involving aberrant energetic metabolism and cell fate regulation in cancer cells. However, few studies have directly investigated the effects of NMN on another major ageing-related disease: tumors. METHODS: We conducted a series of cell and mouse models to evaluate the anti-tumor effect of high-dose NMN. Transmission electron microscopy and a Mito-FerroGreen-labeled immunofluorescence assay (Fe2+) were utilized to demonstrate ferroptosis. The metabolites of NAM were detected via ELISA. The expression of the proteins involved in the SIRT1-AMPK-ACC signaling were detected using a Western blot assay. RESULTS: The results showed that high-dose NMN inhibits lung adenocarcinoma growth in vitro and in vivo. Excess NAM is produced through the metabolism of high-dose NMN, whereas the overexpression of NAMPT significantly decreases intracellular NAM content, which, in turn, boosts cell proliferation. Mechanistically, high-dose NMN promotes ferroptosis through NAM-mediated SIRT1-AMPK-ACC signaling. CONCLUSIONS: This study highlights the tumor influence of NMN at high doses in the manipulation of cancer cell metabolism, providing a new perspective on clinical therapy in patients with lung adenocarcinoma.

20.
Nat Microbiol ; 8(5): 919-933, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37069401

RESUMEN

Epidemiological studies have indicated an association between statin use and reduced incidence of colorectal cancer (CRC), and work in preclinical models has demonstrated a potential chemopreventive effect. Statins are also associated with reduced dysbiosis in the gut microbiome, yet the role of the gut microbiome in the protective effect of statins in CRC is unclear. Here we validated the chemopreventive role of statins by retrospectively analysing a cohort of patients who underwent colonoscopies. This was confirmed in preclinical models and patient cohorts, and we found that reduced tumour burden was partly due to statin modulation of the gut microbiota. Specifically, the gut commensal Lactobacillus reuteri was increased as a result of increased microbial tryptophan availability in the gut after atorvastatin treatment. Our in vivo studies further revealed that L. reuteri administration suppressed colorectal tumorigenesis via the tryptophan catabolite, indole-3-lactic acid (ILA). ILA exerted anti-tumorigenic effects by downregulating the IL-17 signalling pathway. This microbial metabolite inhibited T helper 17 cell differentiation by targeting the nuclear receptor, RAR-related orphan receptor γt (RORγt). Together, our study provides insights into an anti-cancer mechanism driven by statin use and suggests that interventions with L. reuteri or ILA could complement chemoprevention strategies for CRC.


Asunto(s)
Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Limosilactobacillus reuteri , Microbiota , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Triptófano , Estudios Retrospectivos , Neoplasias Colorrectales/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA