RESUMEN
Hydrogen peroxide (H2O2) is associated with diseases and food safety. Thus, it is essential to achieve sensitive and efficient detection of H2O2. Herein, a ratiometric luminescence composite nanoprobe was designed for single particle imaging sensing of H2O2 by combining NaYbF4:Er@NaYbF4:Tm@NaGdF4:Yb upconversion nanoparticles (UCNPs) with cyanine dye IR-628. High brightness NaYbF4:Er@NaYbF4:Tm@NaGdF4:Yb UCNPs with double-peak emission (665 and 812 nm) were synthesised. Cyanine dye IR-628 with an absorption peak at 628 nm was synthesised and served as a recognition unit. More importantly, on the basis of the upconversion luminescence total internal reflection imaging technique, we developed a ratiometric single particle imaging quantitative analysis for sensing H2O2 with a limit of quantitation of 5 nM. This ratiometric single particle imaging method not only greatly eliminates the influence of the probe concentration and instrumental and environmental factors, but also reduces the dosage of the reagent used and improves the sensitivity of detection.
Asunto(s)
Peróxido de Hidrógeno , Nanopartículas , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Nanopartículas/química , Luminiscencia , Contaminación de Alimentos/análisis , Colorantes Fluorescentes/química , Límite de DetecciónRESUMEN
A ratio luminescence probe was developed for detecting Staphylococcus aureus (S. aureus) based on luminescence energy transfer (LET) using double-wavelength emission (550 nm and 812 nm) upconversion nanoparticles (UCNPs) as donor, gold nanoparticles (AuNPs) as acceptor and the aptamer for S. aureus as the specific recognition and link unit. The LET process could cause luminescence quenching because of the spectral overlap between the acceptor and the donor at 550 nm. In the presence of S. aureus, S. aureus selectively combined with the aptamer, and the AuNPs left the surface of UCNPs, which weakened the quenching effect and restored the luminescence of UCNPs. Based on this, the ratio detection was realized by monitoring the change of the luminescence signal of the probe at 550 nm and taking the luminescence signal at 812 nm as the reference signal. Crucially, the probe has a fast reaction speed, with a reaction time of 25 min, and the detection of S. aureus is realized in the concentration range of 5.0 × 103-3.0 × 105 CFU/ml, with the detection limit of 106 CFU/ml. Therefore, the ratio probe has great potential for detecting of S. aureus in food because of its high sensitivity, fast speed and good selectivity.
Asunto(s)
Aptámeros de Nucleótidos , Transferencia de Energía , Oro , Luminiscencia , Mediciones Luminiscentes , Nanopartículas del Metal , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Oro/química , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Límite de DetecciónRESUMEN
Cell wall invertase (CIN) is a vital member of plant invertase (INV) and plays a key role in the breakdown of sucrose. This enzyme facilitates the hydrolysis of sucrose into glucose and fructose, which is crucial for various aspects of plant growth and development. However, the function of CIN genes in foxtail millet (Setaria italica) is less studied. In this research, we used the blast-p of NCBI and TBtools for bidirectional comparison, and a total of 13 CIN genes (named SiCINs) were identified from foxtail millet by using Arabidopsis and rice CIN sequences as reference sequences. The phylogenetic tree analysis revealed that the CIN genes can be categorized into three subfamilies: group 1, group 2, and group 3. Furthermore, upon conducting chromosomal localization analysis, it was observed that the 13 SiCINs were distributed unevenly across five chromosomes. Cis-acting elements of SiCIN genes can be classified into three categories: plant growth and development, stress response, and hormone response. The largest number of cis-acting elements were those related to light response (G-box) and the cis-acting elements related to seed-specific regulation (RY-element). qRT-PCR analysis further confirmed that the expression of SiCIN7 and SiCIN8 in the grain was higher than that in any other tissues. The overexpression of SiCIN7 in Arabidopsis improved the grain size and thousand-grain weight, suggesting that SiCIN7 could positively regulate grain development. Our findings will help to further understand the grain-filling mechanism of SiCIN and elucidate the biological mechanism underlying the grain development of SiCIN.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Cromosomas de las Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Genoma de Planta , Mapeo CromosómicoRESUMEN
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
RESUMEN
We have developed an upconversion luminescent ratiometric nanoprobe, specifically designed for detection of biothiols with high sensitivity (â¼25 nM) at the single-particle level. Using a single-particle localization and rendering method, this nanoprobe enables super-resolution imaging sensing of biothiols within a confined 22 nm space in living cells.
Asunto(s)
Diagnóstico por Imagen , Nanopartículas , LuminiscenciaRESUMEN
BACKGROUND: Molecular subtyping is expected to enable precise treatment. However, reliable subtyping strategies for clinical application remains defective and controversial. Given the significance of tumor immune dysfunction and exclusion (TIDE), we aimed to develop a novel TIDE-based subtyping strategy to guide personalized immunotherapy in the bladder cancer (BC). METHODS: Transcriptome data of BC was used to evaluate the heterogeneity and the status of TIDE patterns. Subsequently, consensus clustering was applied to classify BC patients based on TIDE marker-genes. Patients' clinicopathological, molecular features and signaling pathways of the different TIDE subtypes were well characterized. We also utilize the deconvolution algorithms to analyze the tumor microenvironment, and further explore the sensitivity and mechanisms of each subtype to immunotherapy. Furthermore, BC patient clinical information, real-world BC samples and urine samples were collected for the validation of our findings, which were used for RNA-seq analysis, H&E staining, immunohistochemistry and immunofluorescence staining, and enzyme-linked immunosorbent assay. Finally, we also explored the conservation of our novel TIDE subtypes in pan-cancers. RESULTS: We identified 69 TIDE biomarker genes and classified BC samples into three subtypes using consensus clustering. Subtype I showed the lowest TIDE status and malignancy with the best prognosis and highest sensitivity to immune checkpoint blockade (ICB) treatment, which was enriched of metabolic related signaling pathways. Subtype III represented the highest TIDE status and malignancy with the poorest prognosis and resistance to ICB treatment, resulting from its inhibitory immune microenvironment and T cell terminal exhaustion. Subtype II was in a transitional state with intermediate TIDE level, malignancy, and prognosis. We further confirmed the existence and characteristics of our novel TIDE subtypes using real-world BC samples and collected patient clinical data. This subtyping method was proved to be more efficient than previous known methods in identifying non-responders to immunotherapy. We also propose that combining our TIDE subtypes with known biomarkers can potentially improve the sensitivity and specificity of these biomarkers. Moreover, besides guiding ICB treatment, this classification approach can assist in selecting the frontline or recommended drugs. Finally, we confirmed that the TIDE subtypes are conserved across the pan-tumors. CONCLUSIONS: Our novel TIDE-based subtyping method can serve as a powerful clinical tool for BC and pan-cancer patients, and potentially guiding personalized therapy decisions for selecting potential beneficiaries and excluding resistant patients of ICB therapy.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Inmunoterapia , Biomarcadores de Tumor , Algoritmos , Análisis por Conglomerados , Microambiente Tumoral , PronósticoRESUMEN
BACKGROUND: Immune-related enhancer RNAs (eRNAs) have garnered significant attention in cancer metabolism research, yet their specific roles in ccRCC have remained elusive. METHODS: We retrieved eRNA expression profiles from TCGA database and identified immune-related eRNAs (IREs) by assessing their co-expression with immune genes. Utilizing consensus clustering, we organized these IREs into two distinct clusters. The construction of an IREs signature was accomplished through the LASSO and multivariate Cox analysis. Furthermore, we performed Cell Counting Kit-8 and clonogenic assays to assess changes in the proliferative capacity of Caki-1 and 769-P cells. RESULTS: The existence of two clusters of immune-related eRNAs in ccRCC, each with distinctive prognostic and immunological attributes. Cluster B exhibited immunosuppressive properties and displayed a positive correlation with immunosuppressive cells. Functional enrichment analysis unveiled their involvement in several tumor-promoting pathways, metabolic pathways and immune pathways. The IREs signature demonstrated its potential to accurately predict patient immune and prognostic characteristics. AC003092.1, an eRNA strongly associated with patient survival, emerged as a potential oncogene significantly linked to adverse prognosis and the presence of immunosuppressive cells and checkpoints in ccRCC patients. Notably, AC003092.1 displayed marked upregulation in ccRCC tissues and cell lines, and its knockdown substantially inhibited the proliferation of Caki-1 and 769-P cells. CONCLUSION: We established a robust predictive model that played a vital role in determining the prognosis, clinicopathological characteristics and immune cell infiltration patterns of ccRCC patients. IRE, particularly AC003092.1, which was strongly associated with survival, hold promise as novel immunotherapeutic targets for ccRCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Pronóstico , Oncogenes , Bioensayo , ARN Potenciadores , Inmunosupresores , Neoplasias Renales/genéticaRESUMEN
Carbon emissions from landfill construction and management have become a global concern. Life cycle analysis (LCA) has been widely used to assess the environmental impacts of engineered infrastructures over their lifetimes. LCA has also been applied to landfill leachate and gas management, but rarely to landfill final cover systems. This paper reports the results of an LCA of the following landfill final cover systems: compacted clay cover, geomembrane cover, cover with capillary effects (CCBE), dual capillary barrier cover, three-layer landfill cover system using natural soils, three-layer cover using recycled concrete aggregate (RCA) and biochar-amended three-layer landfill cover system using RCA. The LCA assessment of landfill cover considers the cost, carbon emissions and carbon sequestration during the production, construction and operation phases. The effects of landfill cover on global warming, freshwater eutrophication, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity and fossil resource scarcity are also evaluated. In addition, the sensitivities of cost and carbon emission to the use of electric-powered machines and transportation distance are analysed. It is revealed that the three-layer cover system using RCA and biochar has the lowest unit cost and carbon emission of all of the covers, up to 88 % and 66 % lower, respectively, than those of the other six covers. In addition, this cover system has the highest carbon sequestration rate, with a value of 47.9 kg CO2/(y·m2), four times higher than that of the compacted clay cover. Finally, this sustainable cover mitigates global warming and reduces adverse environmental impacts by up to 82 %. Therefore, the biochar amended three-layer cover system using RCA without geomembrane offers the greatest economic benefits, performs effectively in terms of the pursuit of carbon neutrality and promotes sustainable development.
RESUMEN
Background: Classical biomarkers have been used to classify clear cell renal cell carcinoma (ccRCC) patients in a variety of ways, and emerging evidences have indicated that cuproptosis is closely related to mitochondrial metabolism, thereby accelerating the development and progression of ccRCC. Nevertheless, the specific relationship between cuproptosis and the prognosis and treatment of ccRCC remains unclear. Methods: We comprehensively integrated several ccRCC patient datasets into a large cohort. Following that, we systematically analyzed multi-omics data to demonstrate the differences between two cuproptosis clusters. Results: We identified two cuproptosis clusters in ccRCC patients. Among the two clusters, cluster 1 patients showed favorable prognosis. We then confirmed the significant differences between the two clusters, including more typical cancer hallmarks were enriched in cluster 2 patients; cluster 2 patients were more susceptible to develop mutations and had a lower level of gistic score and mRNAsi. Importantly, both Tumor Immune Dysfunction and Exclusion analysis and subclass mapping algorithm showed that cuproptosis 1 patients were more susceptible to be responded to immunotherapy. In addition, a prognostic signature was successfully developed and also showed prominent predictive power in response to immunotherapy. Conclusion: As a result of our findings, we were able to classify ccRCC patients according to cuproptosis in a novel way. By constructing the cuproptosis clusters and developing the signature, patients with ccRCC could have a more accurate prognosis prediction and better immunotherapy options.
RESUMEN
Colorectal tumors often create an immunosuppressive microenvironment that prevents them from responding to immunotherapy. Cannabidiol (CBD) is a non-psychoactive natural active ingredient from the cannabis plant that has various pharmacological effects, including neuroprotective, antiemetic, anti-inflammatory, and antineoplastic activities. This study aimed to elucidate the specific anticancer mechanism of CBD by single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) technologies. Here, we report that CBD inhibits colorectal cancer progression by modulating the suppressive tumor microenvironment (TME). Our single-cell transcriptome and ATAC sequencing results showed that CBD suppressed M2-like macrophages and promoted M1-like macrophages in tumors both in strength and quantity. Furthermore, CBD significantly enhanced the interaction between M1-like macrophages and tumor cells and restored the intrinsic anti-tumor properties of macrophages, thereby preventing tumor progression. Mechanistically, CBD altered the metabolic pattern of macrophages and related anti-tumor signaling pathways. We found that CBD inhibited the alternative activation of macrophages and shifted the metabolic process from oxidative phosphorylation and fatty acid oxidation to glycolysis by inhibiting the phosphatidylinositol 3-kinase-protein kinase B signaling pathway and related downstream target genes. Furthermore, CBD-mediated macrophage plasticity enhanced the response to anti-programmed cell death protein-1 (PD-1) immunotherapy in xenografted mice. Taken together, we provide new insights into the anti-tumor effects of CBD.
RESUMEN
BACKGROUND: The loss of tumor antigens and depletion of CD8 T cells caused by the PD-1/PD-L1 pathway are important factors for tumor immune escape. In recent years, there has been increasing research on traditional Chinese medicine in tumor treatment. Cycloastragenol (CAG), an effective active molecule in Astragalus membranaceus, has been found to have antiviral, anti-aging, anti-inflammatory, and other functions. However, its antitumor effect and mechanism are not clear. METHODS: The antitumor effect of CAG was investigated in MC38 and CT26 mouse transplanted tumor models. The antitumor effect of CAG was further analyzed via single-cell multiomics sequencing. Target responsive accessibility profiling technology was used to find the target protein of CAG. Subsequently, the antitumor mechanism of CAG was explored using confocal microscopy, coimmunoprecipitation and transfection of mutant plasmids. Finally, the combined antitumor effect of CAG and PD-1 antibodies in mice or organoids were investigated. RESULTS: We found that CAG effectively inhibited tumor growth in vivo. Our single-cell multiomics atlas demonstrated that CAG promoted the presentation of tumor cell-surface antigens and was characterized by the enhanced killing function of CD8+ T cells. Mechanistically, CAG bound to its target protein cathepsin B, which then inhibited the lysosomal degradation of major histocompatibility complex I (MHC-I) and promoted the aggregation of MHC-I to the cell membrane, boosting the presentation of the tumor antigen. Meanwhile, the combination of CAG with PD-1 antibody effectively enhanced the tumor killing ability of CD8+ T cells in xenograft mice and colorectal cancer organoids. CONCLUSION: Our data reported for the first time that cathepsin B downregulation confers antitumor immunity and explicates the antitumor mechanism of natural product CAG.
Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Humanos , Ratones , Animales , Catepsina B/farmacología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Anticuerpos , Antígenos de Neoplasias , Proteínas/farmacología , Complejo Mayor de HistocompatibilidadRESUMEN
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most destructive diseases threatening rice production worldwide. Development of resistant cultivars using broad-spectrum resistance (R) genes with high breeding value is the most effective and economical approach to control this disease. In this study, the breeding potential of Pigm gene in geng/japonica rice breeding practice in Jiangsu province was comprehensively evaluated. Through backcross and marker-assisted selection (MAS), Pigm was introduced into two geng rice cultivars (Wuyungeng 32/WYG32 and Huageng 8/HG8). In each genetic background, five advanced backcross lines with Pigm (ABLs) and the same genotypes as the respective recurrent parent in the other 13 known R gene loci were developed. Compared with the corresponding recurrent parent, all these ABLs exhibited stronger resistance in seedling inoculation assay using 184 isolates collected from rice growing regions of the lower region of the Yangtze River. With respect to panicle blast resistance, all ABLs reached a high resistance level to blast disease in tests conducted in three consecutive years with the inoculation of seven mixed conidial suspensions collected from different regions of Jiangsu province. In natural field nursery assays, the ABLs showed significantly higher resistance than the recurrent parents. No common change on importantly morphological traits and yield-associated components was found among the ABLs, demonstrating the introduction of Pigm had no tightly linked undesirable effect on rice economically important traits and its associated grain weight reduction effect could be probably offset by others grain weight genes or at least in the background of the aforementioned two varieties. Notably, one rice line with Pigm, designated as Yangnonggeng 3091, had been authorized as a new variety in Jiangsu province in 2021, showing excellent performance on both grain yield and quality, as well as the blast resistance. Together, these results suggest that the Pigm gene has a high breeding value in developing rice varieties with durable and broad-spectrum resistance to blast disease.
RESUMEN
T cells, including both CD4+ and CD8+ T cells, play a pivotal role in mediating various inflammation and immune disorders. A long-standing challenge in T cell-based immunotherapy is to precisely inactivate or delete the pathogenic T cells in inflammation and autoimmune diseases, or to selectively expand the immunocompetent T cell in tumor or other immune compromised situations, without inducing global immunosuppression or zealous immune activation respectively. To achieve this, a specific marker is needed to differentiate the pathogenic or immunocompetent T cell among the rests. Indeed, recent progress of immunology strongly suggests that CXC chemokine receptor 6 (CXCR6, CD186) is such a kind of marker. Here, we review the emerging role of CXCR6 as a novel target for immunotherapy and discuss the underlying mechanism. We propose that CXCR6-based immunotherapy will play a significant role in autoimmune, nonalcoholic steatohepatitis (NASH), tumor, coronavirus disease 2019 (COVID-19) and even ageing-related inflammatory infliction.
RESUMEN
Ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides. In this study, we explore the combination of a ferroptosis activator with an oncolytic vaccinia virus in tumor models. Erastin induced cell death in hepatoma, colon, and ovarian cancer cells, but not in melanoma cancer cells. Erastin, not the oncolytic vaccinia virus (OVV), induced the expression of key marker genes for ferroptosis in cancer cells. In hepatocellular carcinoma and colon cancer models, either erastin or OVV inhibited tumor growth, but a combination of the two yielded the best therapeutic effects, as indicated by inhibited tumor growth or regression and longer host survival. Immunological analyses indicate that erastin alone had little or no effect on systemic immunity or local immunity in the tumor. However, when combined with OV, erastin enhanced the number of activated dendritic cells and the activity of tumor-infiltrating T lymphocytes as indicated by an increase in IFN-γ+CD8+ and PD-1+CD8+ T cells. These results demonstrate that erastin can exert cytotoxicity on cancer cells via ferroptosis, but has little effect on immune activity by itself. However, when combined with an OVV, erastin promoted antitumoral immunity and efficacy by increasing the number of activated dendritic cells and promoting the activities of tumor specific CD8+ T cells in the tumor.
RESUMEN
In this work, a single particle imaging method based on the total internal reflection (TIR) imaging platform for the sensing and cell imaging of nitrite (NO2-) in the near-infrared region using cyanine dye-assembled composite upconversion nanoparticles (UCNPs) was developed. The NaYF4:Yb,Tm@NaGdF4 UCNPs were synthesized as energy donors, and the cyanine dye IR-798 was prepared as an energy acceptor. Since the absorption spectrum of the cyanine dye IR-798 and the luminescence spectrum of upconversion nanoparticles overlapped effectively, IR-798 quenched the luminescence of the UCNPs. When NO2- was added to the cyanine dye-assembled composite upconversion nanoparticle system, NO2- destroyed the conjugate structure of IR-798, so that the luminous intensity of UCNPs could be restored. Based on the mechanism, a quantitative image analysis with high sensitivity, low sample usage, and fast response time using the TIR single particle imaging platform was developed to determine the content of nitrite in human serum samples. In addition, the UCNPs-IR-798 probe was applied to image the exogenous NO2- content in HeLa living cells based on the single particle imaging platform.
Asunto(s)
Nanopartículas , Nitritos , Colorantes , Humanos , Luminiscencia , Nanopartículas/química , Dióxido de Nitrógeno , Imagen Individual de MoléculaRESUMEN
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
RESUMEN
Here, NaGdF4 ,Yb,Er@NaGdF4 ,Yb,Tm@NaYF4 core@shell@shell three-layer structure of upconversion nanoparticles (UCNPs) coated with Fe-Tetrakis (4-carboxyphenyl) porphine (TCPP) metal-organic frameworks (Fe-MOFs) nanocomposite (UCNPs@MOFs) was designed and constructed for multimodal imaging and synergetic chemodynamic therapy (CDT)/photodynamic therapy (PDT) of tumors. The UCNPs@MOFs were successfully applied for tumor cells imaging inâ vitro and inâ vivo in near-infrared (NIR) region. The doped Gd was used as contrast agent for the magnetic resonance imaging (MRI) of mouse tumors. The luminescence in the UV-vis region was absorbed by the Fe-MOFs to produce singlet oxygen (1 O2 ) for PDT. The Fe3+ doped in the MOFs can catalyze H2 O2 to produce oxygen and hydroxyl radical (â OH). Hydroxyl radical is used in CDT and cooperates with the 1 O2 of PDT. Based on the CDT/PDT synergistic effects, the UCNPs@MOFs nanocomposite had obviously enhanced tumor inhibitory efficiency inâ vivo. These results described that the asprared UCNPs@MOFs nanocomposite have great potential in the effective multimodal imaging and treatment of tumors.
Asunto(s)
Nanocompuestos , Nanopartículas , Fotoquimioterapia , Animales , Radical Hidroxilo , Luminiscencia , Ratones , Imagen Multimodal , Nanocompuestos/uso terapéutico , Nanopartículas/química , Fotoquimioterapia/métodosRESUMEN
UiO-66-NH2 nanocomposite was post-modified with 4-mercaptophenylboronic acid (MPBA) by the method of in situ hybridization reaction. The hybrid boronate affinity material UiO-NH2 @P (TEPIC-co-MPBA) was characterized by scanning electron microscopy, X-ray diffraction and Fourier-transform infrared spectroscopy. The material was applied as fluorescent probe for the detection of cis-diol containing compounds based on the boronate affinity mechanism, and exhibited high specific selectively. The proposed method exhibited good linearity for the detection of catechol in the range of 0.50 to 8.00 µg ml-1 . The detection limit was 0.13 µg ml-1 . The tactic was successfully applied to analyze the total polyphenols in tea beverages for catechol, and relative recovery was in 98.86-106.00%. Therefore, this work provided a promising strategy for the recognition of cis-diol containing compounds.
Asunto(s)
Ácidos Ftálicos , Alcoholes , Bebidas/análisis , Catecoles , Estructuras Metalorgánicas , TéRESUMEN
Colorectal cancer (CRC), a malignant tumor worldwide consists of microsatellite instability (MSI) and stable (MSS) phenotypes. Although SHP2 is a hopeful target for cancer therapy, its relationship with innate immunosuppression remains elusive. To address that, single-cell RNA sequencing was performed to explore the role of SHP2 in all cell types of tumor microenvironment (TME) from murine MC38 xenografts. Intratumoral cells were found to be functionally heterogeneous and responded significantly to SHP099, a SHP2 allosteric inhibitor. The malignant evolution of tumor cells was remarkably arrested by SHP099. Mechanistically, STING-TBK1-IRF3-mediated type I interferon signaling was highly activated by SHP099 in infiltrated myeloid cells. Notably, CRC patients with MSS phenotype exhibited greater macrophage infiltration and more potent SHP2 phosphorylation in CD68+ macrophages than MSI-high phenotypes, suggesting the potential role of macrophagic SHP2 in TME. Collectively, our data reveals a mechanism of innate immunosuppression mediated by SHP2, suggesting that SHP2 is a promising target for colon cancer immunotherapy.
RESUMEN
In this work, a quantitative image analysis method based on cyanine dye-upconversion nanoparticles composite luminescent nanoprobe for the detection of nitrite was developed. The nanoprobe was constructed by combining the NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) and the new cyanine dye IR-790. The upconversion nanoparticles transferred energy to IR-790, resulting in the luminescence quenching, while the luminescence of UCNPs was recovered after adding NO2-. The increase in photons was related to the concentration of NO2-. Under the optimal experimental conditions, the detection range was 0.20-140 µM and the limit of detection was 0.030 µM. The measurement for NO2- can be completed in 29 min. The method has the characteristics of fast response (~0.1 s), low sample consumption (10 µL) and powerful data support (550 frame time series images). Furthermore, the quantitative image analysis method was successfully applied for the analysis of nitrite in environmental water and food samples.