Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 285: 127784, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824820

RESUMEN

Fusarium crown rot (FCR) caused by Fusarium pseudograminearum poses a significant threat to wheat production in the Huang-Huai-Hai region of China. However, the pathogenic mechanism of F. pseudograminearum is still poorly understood. Zn2Cys6 transcription factors, which are exclusive to fungi, play pivotal roles in regulating fungal development, drug resistance, pathogenicity, and secondary metabolism. In this study, we present the functional characterization of a Zn2Cys6 transcription factor F. pseudograminearum, designated Fp487. In F. pseudograminearum, Fp487 is shown to be required for mycelial growth through gene knockout and phenotypic analyses. Compared with wild-type CF14047, the ∆Fp487 mutant displayed a slight reduction in growth rate but a significant decrease in conidiogenesis, pathogenicity and 3-acetyl-deoxynivalenol (3AcDON) production. Moreover, the mutant exhibited heightened sensitivity to oxidative and cytomembrane stress. Furthermore, we synthesized dsRNA from the Fp487 gene in vitro, resulting in a reduction in the growth rate of F. pseudograminearum and its virulence on barley leaves through spray-induced gene silencing (SIGS). Notably, this study makes the first instance of inducing the expression of abundant dsRNA from F. pseudograminearum by engineering the Escherichia coli strain HT115 (DE3) and utilizing the SIGS technique to evaluate the virulence effect of dsRNA on F. pseudograminearum. In conclusion, our findings revealed the crucial role of Fp487 in regulating pathogenicity, stress responses, DON production, and conidiogenesis in F. pseudograminearum. Furthermore, Fp487 is a potential RNAi-based target for FCR control.


Asunto(s)
Proteínas Fúngicas , Fusarium , Regulación Fúngica de la Expresión Génica , Hordeum , Enfermedades de las Plantas , Factores de Transcripción , Fusarium/genética , Fusarium/patogenicidad , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hordeum/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Triticum/microbiología , Hojas de la Planta/microbiología , Técnicas de Inactivación de Genes , China , Micelio/crecimiento & desarrollo , Silenciador del Gen
2.
Arch Virol ; 169(3): 49, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366289

RESUMEN

Three dsRNA segments were detected in Fusarium pseudograminearum strain CF14029, a pathogen causing Fusarium crown rot in China. Characterization and sequence analysis confirmed that these dsRNA sequences originated from the same virus. The viral genome consists of three dsRNA segments: dsRNA1 (3,560 nt in length), encoding an RNA-dependent RNA polymerase (RdRp), dsRNA2 (2,544 nt in length), encoding a hypothetical protein, and dsRNA3 (2,478 nt in length), encoding a putative coat protein (CP). Phylogenetic analysis based on the RdRp and CP amino acid sequences revealed a high degree of similarity of this virus to members of the genus Alternavirus, family Alternaviridae, isolated from other Fusarium fungi. As a novel member of the genus Alternavirus, this virus was provisionally named "Fusarium pseudograminearum alternavirus 1" (FpgAV1). Like other alternaviruses found in Fusarium species, the positive-sense strand of each genomic dsRNA of FpgAV1 possesses a poly(A) tail and a distinctive 5'-terminal octamer sequence (5'-GCT GTG TG-3'). This is the first report of the genomic sequence of an alternavirus identified in F. pseudograminearum.


Asunto(s)
Fusarium , Fusarium/genética , Triticum/microbiología , Filogenia , Genoma Viral , ARN Bicatenario/genética , ARN Polimerasa Dependiente del ARN/genética , Enfermedades de las Plantas/microbiología
3.
Pestic Biochem Physiol ; 198: 105723, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225078

RESUMEN

Cyclobutrifluram (TYMIRIUM® technology), a new succinate dehydrogenase inhibitor (SDHI) fungicide, is currently being registered by SYNGENTA for controlling Fusarium crown rot (FCR) of wheat in China. The application of 15 or 30 g of active ingredient/100 kg seed of cyclobutrifluram significantly reduced pre-emergence damping-off, discoloration on the stem base and formation of whiteheads caused by FCR. The EC50 values of cyclobutrifluram for 60 isolates of F. pseudograminearum, 30 isolates of F. asiaticum and 30 isolates of F. graminearum ranged from 0.016 to 0.142 mg L-1, 0.010 to 0.041 mg L-1 and 0.012 to 0.059 mg L-1, respectively. One hundred and seven cyclobutrifluram-resistant (CR) mutants were obtained from three Fusarium species isolates, with ten types of mutations identified in Sdh genes. Three Fusarium species isolates exhibited similar resistance mechanisms, with the most prevalent mutations, SdhC1A83V and SdhC1R86K, accounting for 61.68% of mutants. The CR mutants possessed comparable or slightly impaired fitness compared to the corresponding parental isolates. The CR mutants carrying FpSdhBH248Y/Q/D exhibited increased sensitivity to fluopyram. An overall moderate risk of resistance development in three Fusarium species was recommended for cyclobutrifluram.


Asunto(s)
Fusarium , Fusarium/genética , Triticum , Enfermedades de las Plantas/prevención & control , Mutación , Ácido Succínico
4.
Plant Dis ; 108(6): 1812-1819, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38277654

RESUMEN

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, significantly impacts wheat yield and quality in China's Huanghuai region. The rapid F. pseudograminearum epidemic and FCR outbreak within a decade remain unexplained. In this study, two high-quality, chromosome-level genomes of F. pseudograminearum strains producing 3-acetyl-deoxynivalenol (3AcDON) and 15-acetyl-deoxynivalenol (15AcDON) toxins were assembled. Additionally, 38 related strains were resequenced. Genomic differences such as single nucleotide polymorphisms (SNPs), insertions/deletions (indels), and structural variations (SVs) among F. pseudograminearum strains were analyzed. The whole-genome SNP locus-based population classification mirrored the toxin chemotype (3AcDON and 15AcDON)-based classification, indicating the presence of genes associated with the trichothecene toxin gene cluster. Further analysis of differential SNP, indel, and SV loci between the 3AcDON and 15AcDON populations revealed a predominant connection to secondary metabolite synthesis genes. Notably, the majority of the secondary metabolite biosynthesis gene cluster loci were located in SNP-dense genomic regions, suggesting high mutability and a possible contribution to F. pseudograminearum population structure and environmental adaptability. This study provides insightful perspectives on the distribution and evolution of F. pseudograminearum and for forecasting the spread of wheat FCR, thereby aiding in the development of preventive measures and control strategies.


Asunto(s)
Fusarium , Genoma Fúngico , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Metabolismo Secundario , Tricotecenos , Triticum , Fusarium/genética , Triticum/microbiología , Enfermedades de las Plantas/microbiología , Tricotecenos/metabolismo , China , Metabolismo Secundario/genética , Micotoxinas/genética
5.
J Agric Food Chem ; 71(51): 20643-20653, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38108286

RESUMEN

Fusarium graminearum exhibited natural resistance to a majority of succinate dehydrogenase inhibitor fungicides (SDHIs) and the molecular mechanisms responsible for the natural resistance were still unknown. Succinate dehydrogenase subunit C (SdhC) is an essential gene for maintaining succinate-ubiquinone oxidoreductase (SQR) function in fungi. In F. graminearum, a paralog of FgSdhC named as FgSdhC1 was identified. Based on RNA-Seq and qRT-PCR assay, we found that the expression level of FgSdhC1 was very low but upregulated by SDHIs treatment. Based on reverse genetics, we demonstrated that FgSdhC1 was an inessential gene in normal growth but was sufficient for maintaining SQR function and conferred natural resistance or reduced sensitivity toward SDHIs. Additionally, we found that the standard F. graminearum isolate PH-1 had high sensitivity to a majority of SDHIs. A single nucleotide variation (C to T) in the FgSdhC1 of isolate PH-1, resulting in a premature termination codon (TAA) replacing the fourth amino acid glutamine (Q), led to the failure of FgSdhC1 to perform functions of conferring nature resistance. These results established that a dispensable paralogous gene determined SDHIs resistance in natural populations of F. graminearum.


Asunto(s)
Fungicidas Industriales , Fusarium , Fungicidas Industriales/farmacología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas/microbiología , Fusarium/genética , Fusarium/metabolismo
6.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37623617

RESUMEN

Sharp eyespot is a crucial disease affecting cereal plants, such as bread wheat (Triticum aestivum) and barley (Hordeum vulgare), and is primarily caused by the pathogenic fungus Rhizoctonia cerealis. As disease severity has increased, it has become imperative to find an effective and reasonable control strategy. One such strategy is the use of the trehalose analog, validamycin, which has been shown to have a potent inhibitory effect on several trehalases found in both insects and fungi, and is widely used as a fungicide in agriculture. In this study, we demonstrated that 0.5 µg/mL validamycin on PDA plates had an inhibitory effect on R. cerealis strain R0301, but had no significant impact on Fusarium graminearum strain PH-1. Except for its inhibiting the trehalase activity of pathogenic fungi, little is known about its mechanism of action. Six trehalase genes were identified in the genome of R. cerealis, including one neutral trehalase and five acidic trehalase genes. Enzyme activity assays indicated that treatment with 5 µg/mL validamycin significantly reduces trehalase activity, providing evidence that validamycin treatment does indeed affect trehalase, even though the expression levels of most trehalase genes, except Rc17406, were not obviously affected. Transcriptome analysis revealed that treatment with validamycin downregulated genes involved in metabolic processes, ribosome biogenesis, and pathogenicity in the R. cerealis. KEGG pathway analysis further showed that validamycin affected genes related to the MAPK signaling pathway, with a significant decrease in ribosome synthesis and assembly. In conclusion, our results indicated that validamycin not only inhibits trehalose activity, but also affects the ribosome synthesis and MAPK pathways of R. cerealis, leading to the suppression of fungal growth and pesticidal effects. This study provides novel insights into the mechanism of action of validamycin.

7.
Microbiol Spectr ; 11(4): e0052223, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37436153

RESUMEN

Rhizoctonia cerealis is the pathogen of wheat sharp eyespot, which occurs throughout temperate wheat-growing regions of the world. In this project, the genomes of viruses from four strains of R. cerealis were analyzed based on Illumina high-throughput transcriptome sequencing (RNA-Seq) data. After filtering out reads that mapped to the fungal genome, viral genomes were assembled. In total, 131 virus-like sequences containing complete open reading frames (ORFs), belonging to 117 viruses, were obtained. Based on phylogenetic analysis, some of them were identified as novel members of the families Curvulaviridae, Endornaviridae, Hypoviridae, Mitoviridae, Mymonaviridae, and Phenuiviridae, while others were unclassified viruses. Most of these viruses from R. cerealis were significantly different from the viruses already reported. We propose the establishment of a new family, Rhizoctobunyaviridae, and two new genera, Rhizoctobunyavirus and Iotahypovirus. We further clarified the distribution and coinfection of these viruses in the four strains. Surprisingly, 39 viral genomes of up to 12 genera were found in strain R1084. Strain R0942, containing the fewest viruses, also contained 21 viral genomes belonging to 10 genera. Based on the RNA-Seq data, we estimated the accumulation level of some viruses in host cells and found that the mitoviruses in R. cerealis generally have very high accumulation. In conclusion, in the culturable phytopathogenic fungus R. cerealis, we discovered a considerable diversity of mycoviruses and a series of novel viruses. This study expands our understanding of the mycoviral diversity in R. cerealis and provides a rich resource for the further use of mycoviruses to control wheat sharp eyespot. IMPORTANCE Rhizoctonia cerealis is a binucleate fungus that is widely distributed worldwide and can cause sharp eyespot disease in cereal crops. In this study, 131 virus-like sequences belonging to 117 viruses were obtained based on analysis of high-throughput RNA-Seq data from four strains of R. cerealis. Many of these viruses were novel members of various virus families, while others were unclassified viruses. As a result, a new family named Rhizoctobunyaviridae and two new genera, Rhizoctobunyavirus and Iotahypovirus, were proposed. Moreover, the discovery of multiple viruses coinfecting a single host and the high accumulation levels of mitoviruses have shed light on the complex interactions between different viruses in a single host. In conclusion, a significant diversity of mycoviruses was discovered in the culturable phytopathogenic fungus R. cerealis. This study expands our understanding of mycoviral diversity, and provides a valuable resource for the further utilization of mycoviruses to control wheat diseases.


Asunto(s)
Basidiomycota , Virus Fúngicos , Virus ARN , Virus Fúngicos/genética , Triticum/microbiología , Filogenia , Virus ARN/genética , Enfermedades de las Plantas/microbiología
8.
Appl Environ Microbiol ; 89(2): e0123522, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656025

RESUMEN

CHY1 is a zinc finger protein unique to microorganisms that was found to regulate polarized tip growth in Fusarium graminearum, an important pathogen of wheat and barley. To further characterize its functions, in this study we identified CHY1-interacting proteins by affinity purification and selected UDP-galactofuranose (Galf) mutase (UGMA) for detailed characterization, because UGMA and UDP-Galf are unique to fungi and bacteria and absent in plants and animals. The interaction between CHY1 and UGMA was confirmed by yeast two-hybrid assays. Deletion of UGMA in F. graminearum resulted in significant defects in vegetative growth, reproduction, cell wall integrity, and pathogenicity. Infection with the ΔugmA mutant was restricted to the inoculated floret, and no vomitoxin was detected in kernels inoculated with the ΔugmA strain. Compared to the wild type, the ΔugmA mutant produced wide, highly branched hyphae with thick walls, as visualized by transmission electron microscopy. UGMA tagged with green fluorescent protein (GFP) mainly localized to the cytoplasm, consistent with the synthesis of Galf in the cytoplasm. The Δchy1 mutant was more sensitive, while the ΔugmA mutant was more tolerant, to cell wall-degrading enzymes. The growth of the ΔugmA mutant nearly ceased upon caspofungin treatment. More interestingly, nocodazole treatment of the ΔugmA strain attenuated its highly branched morphology, while caspofungin inhibited the degree of the twisted Δchy1 mycelia, indicating that CHY1 and UGMA probably have opposite effects on cell wall architecture. In conclusion, UGMA is an important pathogenic factor that is specific to fungi and bacteria and required for cell wall architecture, radial growth, and caspofungin tolerance, and it appears to be a promising target for antifungal agent development. IMPORTANCE The long-term use of chemical pesticides has had increasingly negative impacts on the ecological environment and human health. Low-toxicity, high-efficiency and environmentally friendly alternative pesticides are of great significance for maintaining the sustainable development of agriculture and human and environmental health. Using fungus- or microbe-specific genes as candidate targets provides a good foundation for the development of low-toxicity, environmentally friendly pesticides. In this study, we characterized a fungus- and bacterium-specific UDP-galactopyranose mutase gene, ugmA, that contributes to the synthesis of the cell wall component Galf and is required for vegetative growth, cell wall integrity, deoxynivalenol (DON) production, and pathogenicity in F. graminearum. The ugmA deletion mutant exhibited increased sensitivity to caspofungin. These results demonstrate the functional importance of UGMA in F. graminearum, and its absence from mammals and higher plants constitutes a considerable advantage as a low-toxicity target for the development of new anti-Fusarium agents.


Asunto(s)
Transferasas Intramoleculares , Humanos , Caspofungina/farmacología , Caspofungina/metabolismo , Virulencia , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas , Esporas Fúngicas
9.
Virus Res ; 297: 198368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684418

RESUMEN

Rhizoctonia cerealis (teleomorph Ceratobasidium cereale) is a soil-borne plant pathogenic fungus that can cause sharp eyespot in wheat or yellow patch in grasses. In this study, 21 new endornavirus genomes were obtained from five R. cerealis strains through the high-throughput sequencing of viral double-stranded RNA. Eighteen viruses were identified as Alphaendornavirus, and three viruses were identified as new species of Betaendornavirus on the basis of the phylogenetic analysis of the deduced amino acid sequences of RNA-dependent RNA polymerase. Notably, 12 of the new alphaendornaviruses could encode two open reading frames (ORFs), which were a rare feature of Endornaviridae. The amino acid sequences encoded by ORF2 from different endornaviruses had very low identity, and their functions and evolution origins remained unclear. Different endornavirus species with remarkably different genome structures could be found in the same R. cerealis strain. This study indicated that endornaviruses are common in R. cerealis and display wide diversity. Betaendornaviruses were found in R. cerealis, and a new species was proposed. This study is the first to report that the endornaviruses from R. cerealis can encode two ORFs and enhances our understanding of the viruses in the Endornaviridae family.


Asunto(s)
Virus ARN , Triticum , Basidiomycota , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Virus ARN/genética , Rhizoctonia/genética
10.
Mol Plant Microbe Interact ; 34(4): 362-375, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33369502

RESUMEN

Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Fusarium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Hifa/metabolismo , Microtúbulos/metabolismo , Esporas Fúngicas/metabolismo , Virulencia , Dedos de Zinc
11.
Front Microbiol ; 11: 597998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324378

RESUMEN

Ca2 +/calmodulin-dependent phosphatase calcineurin is one of the important regulators of intracellular calcium homeostasis and has been investigated extensively in Saccharomyces cerevisiae. However, only a few reports have explored the function of the Crz1 homolog in filamentous fungi, especially in Fusarium graminearum. In this study, we identified Fg01341 as a potential ortholog of yeast Crz1. Fg01341 could interact with calcineurin and initiate nuclear transport in a calcineurin-dependent manner. The ΔFg01341 mutant exhibited normal hyphal growth on basic medium and conidia formation, but sexual reproduction was partially blocked. Pathogenicity assays showed that the virulence of the ΔFg01341 mutant in flowering wheat heads and corn silks dramatically decreased and was thus consistent with the reduction in deoxynivalenol production. Unexpectedly, the sensitivity to osmotic stress of the deletion mutant and that of the wild-type strain did not present any differences. The deletion mutant showed higher sensitivity to tebuconazole than the wild-type strain. Results also showed that the transcription factor Fg01350 might be the calcineurin target and was independent of Crz1. Furthermore, ΔFg01350 showed defects in hyphal growth, sexual production, virulence, and deoxynivalenol production. Collectively, the results indicate that these two proteins functionally redundant and that the calcineurin-Crz1-independent pathway is particularly important in F. graminearum.

12.
Plant Physiol Biochem ; 154: 590-611, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32912491

RESUMEN

SRO (SIMILAR TO RCD ONE), a type of plant-specific small protein family, play important roles in plant growth and development, as well as in response to biotic/abiotic stresses. Although characterization of SROs have been performed in model plants, little is known about their function in wheat, especially under stress conditions. In this study, 30 SRO genes were identified from the wheat genome (TaSRO). They were phylogenetically separated into two groups with distinct structures. The cis-regulatory elements in the promoter region of TaSROs were analyzed and numerous elements functionally associated with stress responding and hormones were interpreted, implying the reason for induction expression patterns of TaSROs during abiotic and biotic stresses in wheat. Whole-genome replication events in the SRO gene family of wheat and seven other species (Arabidopsis thaliana, rice, maize, barley, soybean, upland cotton, and cucumber) were analyzed, resulting in 1, 12, 9, 23, 6, 5, and 3 of gene pairs, respectively. The tissue-specific expression pattern profiling revealed that most TaSROs are highly expressed in one or more tissues and may play an important role in wheat growth and development. In addition, qRT-PCR results further confirmed that these TaSRO genes are involved in wheat stress response. In summary, our study laid a theoretical basis for molecular function deciphering of TaSROs, especially in plant hormones and biotic/abiotic stress responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Estrés Fisiológico , Triticum , Evolución Molecular , Perfilación de la Expresión Génica , Filogenia , Triticum/genética
13.
Mol Biol Rep ; 47(5): 3885-3907, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361896

RESUMEN

Auxin affects many aspects of plant growth and development by regulating the expression of auxin-responsive genes. As one of the three major auxin-responsive families the Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acid (JA) to amino acids during hormone and stress-related signaling. Although some work has been carried out the functions of wheat GH3 (TaGH3) family genes in response to abiotic stresses (including salt stress and osmotic stress) are largely unknown. Access to the complete wheat genome sequence permits genome-wide studies on TaGH3s. We performed a systematic identification of the TaGH3 gene family at the genome level and detected 36 members on 14 wheat chromosomes. Many of the genes were segmentally duplicated and Ka/Ks and inter-species synthetic analyses indicated that polyploidization was the contributor to the increased number of TaGH3 members. Phylogenetic analyses revealed that TaGH3 proteins could divided into three major categories (TaGH3-I, TaGH3-II, and TaGH3-III). Diversified cis-elements in the promoters of TaGH3 genes were predicted as essential players in regulating TaGH3 expression patterns. Gene structure and motif analyses indicated that most TaGH3 genes have relatively conserved exon/intron arrangements and motif compositions. Analysis of multiple transcriptome data sets indicated that many TaGH3 genes are responsive to biological and abiotic stresses and possibly have important functions in stress response. qRT-PCR analysis revealed that TaGH3s were induced by salt and osmotic stresses. Customized annotation results revealed that TaGH3s were widely involved in phytohormone response, defense, growth and development, and metabolism. Overall, our work provides a comprehensive insight into the TaGH3 family members, and a basis for the further study of their biological functions in wheat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Triticum/genética , Ciclopentanos , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Familia de Multigenes/genética , Oxilipinas , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico , Estrés Fisiológico/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
14.
Arch Virol ; 165(2): 487-490, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31784910

RESUMEN

A putative novel positive-sense (+) RNA virus was detected in isolate CF16158 of the fungus Fusarium graminearum, the causal agent of Fusarium head blight and crown rot in wheat in China. The full genome of this virus was sequenced and characterized. The complete cDNA sequence is 7,051 nt long and contains four open reading frames (ORFs). ORF2 is predicted to encode helicase (Hel) and RNA-dependent RNA polymerase (RdRp) domains that are conserved among the alphavirus-like viruses. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of Hel and RdRp indicated that this (+) RNA mycovirus is a novel member of a new, yet to be established family of alphavirus-like viruses. Therefore, we named this virus "Fusarium graminearum alphavirus-like virus 1" (FgALV1). This is the first report of a full-length genomic sequence of a putative alphavirus-like virus in F. graminearum.


Asunto(s)
Alphavirus/clasificación , Alphavirus/aislamiento & purificación , Fusarium/virología , Filogenia , Alphavirus/genética , China , Biología Computacional , Fusarium/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Enfermedades de las Plantas/microbiología , ARN Helicasas/genética , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia , Triticum , Secuenciación Completa del Genoma
15.
Pest Manag Sci ; 76(4): 1549-1559, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31696614

RESUMEN

BACKGROUND: Pydiflumetofen is a new generation succinate dehydrogenase inhibitor currently undergoing the process of registration in China for the control of Fusarium head blight in wheat. A resistance risk assessment of Fusarium graminearum to pydiflumetofen was undertaken in this study. RESULTS: A total of 75 pydiflumetofen-resistant mutants were generated through spontaneous selection and displayed high resistance with an average resistance factor (RF) value of 78. Four mutants were generated through UV mutagenesis and displayed very high resistance with an RF value >1000. The sequence analysis results for Sdh genes and fitness studies revealed the existence of four types of mutations. In particular, 32 spontaneous selection mutants (SP mutants) had an arginine (R) to histidine (H) transition at position 86 in FGSdhC, resulting in seriously reduced fitness. Seven SP mutants had an R to cysteine (C) transition at position 86 in FGSdhC, resulting in reduced fitness. Thirty-six SP mutants had an alanine (A) to valine (V) transition at position 83 in FGSdhC and had no fitness penalties. The efficacy of pydiflumetofen towards a mutant carrying A83V in FGSdhC in vivo was significantly decreased at 42.7%. Four UV mutants had no mutations on all Sdh genes and no fitness penalties. Cross-resistance among boscalid, fluopyram and pydiflumetofen was observed. CONCLUSION: Sdhc mutations were found and other target site resistance may be present in laboratory PR mutants of F. graminearum. An overall moderate risk of resistance development in F. graminearum was recommended for pydiflumetofen. © 2019 Society of Chemical Industry.


Asunto(s)
Fusarium , China , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Medición de Riesgo , Succinato Deshidrogenasa , Ácido Succínico
16.
PeerJ ; 7: e8062, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31763072

RESUMEN

Superoxide dismutases (SODs) are a family of key antioxidant enzymes that play a crucial role in plant growth and development. Previously, this gene family has been investigated in Arabidopsis and rice. In the present study, a genome-wide analysis of the SOD gene family in wheat were performed. Twenty-six SOD genes were identified from the whole genome of wheat, including 17 Cu/Zn-SODs, six Fe-SODs, and three Mn-SODs. The chromosomal location mapping analysis indicated that these three types of SOD genes were only distributed on 2, 4, and 7 chromosomes, respectively. Phylogenetic analyses of wheat SODs and several other species revealed that these SOD proteins can be assigned to two major categories. SOD1 mainly comprises of Cu/Zn-SODs, and SOD2 mainly comprises of Fe-SODs and Mn-SODs. Gene structure and motif analyses indicated that most of the SOD genes showed a relatively conserved exon/intron arrangement and motif composition. Analyses of transcriptional data indicated that most of the wheat SOD genes were expressed in almost all of the examined tissues and had important functions in abiotic stress resistance. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to reveal the regulating roles of wheat SOD gene family in response to NaCl, mannitol, and polyethylene glycol stresses. qRT-PCR showed that eight randomly selected genes with relatively high expression levels responded to all three stresses based on released transcriptome data. However, their degree of response and response patterns were different. Interestingly, among these genes, TaSOD1.7, TaSOD1.9, TaSOD2.1, and TaSOD2.3 feature research value owing to their remarkable expression-fold change in leaves or roots under different stresses. Overall, our results provide a basis of further functional research on the SOD gene family in wheat and facilitate their potential use for applications in the genetic improvement on wheat in drought and salt stress environments.

17.
Arch Virol ; 164(1): 313-316, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30232613

RESUMEN

A Victorivirus was detected in isolate F16176 of the fungus Fusarium asiaticum, the causal agent of Fusarium head blight in China. The full genome sequence of the virus was sequenced and characterized. The complete cDNA sequence is 5,281 nucleotides long with 64.2% G + C content and contains two open reading frames (ORFs) that overlap at the pentanucleotide UAAUG. The two ORFs are predicted to encode coat protein (CP) and RNA-dependent RNA polymerase (RdRp), which are conserved among the dsRNA mycoviruses of the genus Victorivirus. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of RdRp indicated that this dsRNA mycovirus is a new virus belonging to the species Rosellinia necatrix victorivirus 1 in the family Totiviridae. This study is the first to report a full-length genomic sequence of a putative member of the genus Victorivirus in F. asiaticum.


Asunto(s)
Fusarium/virología , Totiviridae/aislamiento & purificación , Triticum/microbiología , Secuencia de Aminoácidos , China , Genoma Viral , Sistemas de Lectura Abierta , Control Biológico de Vectores , Filogenia , Totiviridae/genética , Totiviridae/fisiología , Proteínas Virales/química , Proteínas Virales/metabolismo
18.
Environ Microbiol ; 20(4): 1436-1451, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411478

RESUMEN

The signals by which eukaryotic cells communicate with the environment are usually mediated by vesicle trafficking to be attenuated or terminated. However, vesicle trafficking-mediated signal transmission during interactions between pathogens and host plants is poorly understood. Here, we identified and characterized the vacuole sorting protein FgVps41, which is the yeast HOPS tethering complex subunit Vps41 homolog in Fusarium graminearum. Targeted gene deletion demonstrated that FgVps41 is important for vegetative growth, asexual/sexual development, conidial morphology, plant infection and deoxynivalenol production. Cellular localization and cytological examinations revealed that FgVps41 localizes to early/late endosomes and vacuole membrane, and is recruited to prevacuolar compartments and vacuole membrane by interacting with FgRab7 in F. graminearum. Furthermore, we found FgVps41 mediates vacuole membrane fusion and sorting of FgApeI, a cargo protein involving in the cytosol-to-vacuole targeting pathway. In addition, we found that FgVps41 interacts with FgYck3, a vacuolar type I casein kinase, which regulates vesicle fusion in the AP-3 pathway. Deletion of FgYck3 showed similar phenotypes to the ΔFgvps41 mutant, and both FgRab7 and FgYck3 regulate the normal localization of FgVps41. Collectively, our results demonstrate that FgVps41 acts as a HOPS tethering complex subunit and is important for the development of infection-related morphogenesis in F. graminearum.


Asunto(s)
Caseína Quinasas/metabolismo , Proteínas Fúngicas/genética , Fusarium/crecimiento & desarrollo , Fusarium/genética , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética , Endosomas/metabolismo , Fusarium/patogenicidad , Fusión de Membrana , Transporte de Proteínas/fisiología , Esporas Fúngicas/metabolismo , Tricotecenos/biosíntesis
19.
Mol Plant Microbe Interact ; 30(5): 410-422, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28437167

RESUMEN

Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.


Asunto(s)
Fusarium/metabolismo , Fusarium/patogenicidad , Vesículas Transportadoras/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Proteínas Fúngicas/metabolismo , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Fusarium/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Fenotipo , Pigmentación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Tricotecenos/metabolismo , Técnicas del Sistema de Dos Híbridos , Virulencia/efectos de los fármacos , Virulencia/genética
20.
PLoS One ; 12(3): e0174040, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28306726

RESUMEN

In China, Fusarium head blight is caused mainly by the Fusarium graminearum species complex (FGSC), which produces trichothecene toxins. The FGSC is divided into three chemotypes: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and nivalenol (NIV). In order to predict the geographical changes in the distribution of these chemotype populations in major winter wheat-producing areas in China, the biological characteristics of twenty randomly selected isolates from each of the three chemotypes were studied. No significant difference was exhibited in the growth rate of 3-ADON, 15-ADON, and NIV isolates at 15°C. At 20°C and 25°C, the growth rate of 15-ADON isolates was the highest. At 30°C, the growth rate of NIV and 3-ADON isolates was significantly higher than that of 15-ADON isolates. The 15-ADON isolates produced the highest quantities of perithecia and two to three days earlier than the other two populations at each temperature, and released more ascospores at 18°C. The aggressiveness test on wheat seedlings and ears indicated there was no significant difference between the 3-ADON and 15-ADON isolates. However, the aggressiveness of NIV isolates was significantly lower than that of the 3-ADON and 15-ADON isolates. The DON content in grains from heads inoculated with the 3-ADON isolates was higher than the content of 15-ADON and NIV isolates. The results showed that 15-ADON population had the advantage in perithecia formation and ascospore release, and the 3-ADON population produced more DON in wheat grains. We suggested that distribution of these three chemotype populations may be related to these biological characteristics.


Asunto(s)
Fusarium/genética , Fusarium/fisiología , Triticum/crecimiento & desarrollo , China , Fusarium/crecimiento & desarrollo , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...