Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 343: 122445, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174125

RESUMEN

The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.


Asunto(s)
Quitosano , Embalaje de Alimentos , Proteínas de Insectos , Larva , Própolis , Tenebrio , Quitosano/química , Quitosano/farmacología , Embalaje de Alimentos/métodos , Animales , Tenebrio/química , Própolis/química , Própolis/farmacología , Larva/efectos de los fármacos , Proteínas de Insectos/química , Antibacterianos/farmacología , Antibacterianos/química , Etanol/química , Antioxidantes/química , Antioxidantes/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
2.
Int J Biol Macromol ; 275(Pt 1): 133675, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971287

RESUMEN

With growing concerns about postharvest spoilage of fruits, higher requirements have been placed on high-performance and sustainable active packaging materials. In this study, we prepared curcumin-based functional composite films using chitosan (CS) and Tenebrio molitor larvae protein (TMP) as the substrates. The effects of curcumin concentration on the structural and physicochemical properties of the composite films were determined. Curcumin was equally distributed in the polymer film through physical interactions. Furthermore, the curcumin composite film with 0.3 % addition exhibited a 27.39 % increase in elongation at break (EBA), a 37.04 % increase in the water vapor barrier, and strong UV-blocking properties and antioxidant activity compared with the control film (CS/TMP). The degradation experiment of the composite film on natural soil revealed that the composite film exhibited good biodegradability and environmental protection. Furthermore, the applicability of functional composite films for preserving blueberries was investigated. Compared with the control film and polyethylene (PE) films, the prepared composite films packaging treatment reduced the decay rate and weight loss rate of blueberries during storage, delayed softening and aging, and maintained the quality of blueberries. Using sustainable protein resources (TMP) and natural polysaccharides as packaging materials provides an economically, feasible and sustainable way to achieve the functional preservation of biomass materials.


Asunto(s)
Antioxidantes , Arándanos Azules (Planta) , Quitosano , Curcumina , Embalaje de Alimentos , Conservación de Alimentos , Larva , Tenebrio , Animales , Quitosano/química , Quitosano/farmacología , Curcumina/química , Curcumina/farmacología , Tenebrio/química , Tenebrio/efectos de los fármacos , Embalaje de Alimentos/métodos , Arándanos Azules (Planta)/química , Antioxidantes/farmacología , Antioxidantes/química , Conservación de Alimentos/métodos , Larva/efectos de los fármacos , Proteínas de Insectos/química
3.
Food Chem ; 452: 139611, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749141

RESUMEN

High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and ß-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.


Asunto(s)
Ácidos Grasos , Proteínas de Insectos , Presión , Agregado de Proteínas , Proteínas de Insectos/química , Ácidos Grasos/química , Animales , Manipulación de Alimentos , Abejas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...