Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166874, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37666439

RESUMEN

Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in the enzyme glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the gluconeogenic organs, namely liver, kidney cortex, and intestine. Renal G6Pase-α deficiency in GSD-Ia is characterized by impaired gluconeogenesis, nephromegaly due to elevated glycogen accumulation, and nephropathy caused, in part, by renal fibrosis, mediated by activation of the renin-angiotensin system (RAS). The Wnt/ß-catenin signaling regulates the expression of a variety of downstream mediators implicated in renal fibrosis, including multiple genes in the RAS. Sustained activation of Wnt/ß-catenin signaling is associated with the development and progression of renal fibrotic lesions that can lead to chronic kidney disease. In this study, we examined the molecular mechanism underlying GSD-Ia nephropathy. Damage to the kidney proximal tubules is known to trigger acute kidney injury (AKI) that can, in turn, activate Wnt/ß-catenin signaling. We show that GSD-Ia mice have AKI that leads to activation of the Wnt/ß-catenin/RAS axis. Renal fibrosis was demonstrated by increased renal levels of Snail1, α-smooth muscle actin (α-SMA), and extracellular matrix proteins, including collagen-Iα1 and collagen-IV. Treating GSD-Ia mice with a CBP/ß-catenin inhibitor, ICG-001, significantly decreased nuclear translocated active ß-catenin and reduced renal levels of renin, Snail1, α-SMA, and collagen-IV. The results suggest that inhibition of Wnt/ß-catenin signaling may be a promising therapeutic strategy for GSD-Ia nephropathy.


Asunto(s)
Lesión Renal Aguda , beta Catenina , Ratones , Animales , beta Catenina/genética , beta Catenina/metabolismo , Fibrosis , Colágeno
2.
J Inherit Metab Dis ; 46(6): 1147-1158, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37467014

RESUMEN

Glycogen storage disease type-Ia (GSD-Ia), characterized by impaired blood glucose homeostasis, is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). Using the G6pc-R83C mouse model of GSD-Ia, we explored a CRISPR/Cas9-based double-strand DNA oligonucleotide (dsODN) insertional strategy that uses the nonhomologous end-joining repair mechanism to correct the pathogenic p.R83C variant in G6pc exon-2. The strategy is based on the insertion of a short dsODN into G6pc exon-2 to disrupt the native exon and to introduce an additional splice acceptor site and the correcting sequence. When transcribed and spliced, the edited gene would generate a wild-type mRNA encoding the native G6Pase-α protein. The editing reagents formulated in lipid nanoparticles (LNPs) were delivered to the liver. Mice were treated either with one dose of LNP-dsODN at age 4 weeks or with two doses of LNP-dsODN at age 2 and 4 weeks. The G6pc-R83C mice receiving successful editing expressed ~4% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, lacked hypoglycemic seizures, and displayed normalized blood metabolite profile. The outcomes are consistent with preclinical studies supporting previous gene augmentation therapy which is currently in clinical trials. This editing strategy may offer the basis for a therapeutic approach with an earlier clinical intervention than gene augmentation, with the additional benefit of a potentially permanent correction of the GSD-Ia phenotype.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Oligonucleótidos , Ratones , Animales , Oligonucleótidos/metabolismo , Sistemas CRISPR-Cas , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo
3.
Hum Mol Genet ; 32(2): 262-275, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35961004

RESUMEN

Type Ib glycogen storage disease (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate (G6P) transporter (G6PT) that translocates G6P from the cytoplasm into the endoplasmic reticulum lumen, where the intraluminal G6P is hydrolyzed to glucose by glucose-6-phosphatase-α (G6Pase-α). Clinically, GSD-Ib patients manifest a metabolic phenotype of impaired blood glucose homeostasis and a long-term risk of hepatocellular adenoma/carcinoma (HCA/HCC). Studies have shown that autophagy deficiency contributes to hepatocarcinogenesis. In this study, we show that G6PT deficiency leads to impaired hepatic autophagy evident from attenuated expression of many components of the autophagy network, decreased autophagosome formation and reduced autophagy flux. The G6PT-deficient liver displayed impaired sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK) signaling, along with reduced expression of SIRT1, forkhead boxO3a (FoxO3a), liver kinase B-1 (LKB1) and the active p-AMPK. Importantly, we show that overexpression of either SIRT1 or LKB1 in G6PT-deficient liver restored autophagy and SIRT1/FoxO3a and LKB1/AMPK signaling. The hepatosteatosis in G6PT-deficient liver decreased SIRT1 expression. LKB1 overexpression reduced hepatic triglyceride levels, providing a potential link between LKB1/AMPK signaling upregulation and the increase in SIRT1 expression. In conclusion, downregulation of SIRT1/FoxO3a and LKB1/AMPK signaling underlies impaired hepatic autophagy which may contribute to HCA/HCC development in GSD-Ib. Understanding this mechanism may guide future therapies.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad del Almacenamiento de Glucógeno Tipo I , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiología , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Autofagia/genética
4.
Mol Ther ; 29(4): 1602-1610, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33359667

RESUMEN

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.


Asunto(s)
Edición Génica , Terapia Genética , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Glucosa/genética , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Humanos , Hígado/metabolismo , Hígado/patología , Ratones
5.
J Endocrinol ; 199(2): 165-76, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18719072

RESUMEN

Little is known about the protein-protein interactions that regulate the trafficking of the angiotensin II type I receptor (AGTR1) through the biosynthetic pathway. The membrane-proximal region of the cytoplasmic tail of the AGTR1 has been identified by site-directed mutagenesis studies as an essential site for normal AGTR1 folding and surface expression. Based on yeast two-hybrid screening of a human kidney cDNA library with the AGTR1 carboxyl-terminal tail as a bait, we identified the invariant chain (CD74) as a novel interacting protein. This association was confirmed by co-immunoprecipitation and co-localization studies. The binding site for CD74 on the AGTR1 carboxyl-terminal tail was localized to a site previously identified as important for the exit of the AGTR1 from the endoplasmic reticulum (ER), and conserved in many G protein-coupled receptors. Transient co-expression of CD74 with the AGTR1 in CHO-K1 cells consistently reduced the AGTR1 density at the cell surface. Furthermore, the interaction of CD74 with the carboxyl-terminal tail of the AGTR1 caused its retention in the ER and promoted its proteasomal degradation. These observations indicate that CD74 and the AGTR1 become associated in the early biosynthetic pathway, and that CD74 is a negative regulator of AGTR1 expression.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos B/genética , Western Blotting , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Inmunoprecipitación , Microscopía Confocal , Unión Proteica/fisiología , Receptor de Angiotensina Tipo 1/genética , Transfección , Técnicas del Sistema de Dos Híbridos
6.
J Steroid Biochem Mol Biol ; 102(1-5): 79-88, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17113976

RESUMEN

G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a G(i)-linked cascade with a minor contribution from the G(q)/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30-40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of G(i) and Src, with a minor contribution from MMP-dependent EGF-R transactivation.


Asunto(s)
Endotelina-1/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Zona Glomerular/efectos de los fármacos , Zona Glomerular/enzimología , Angiotensina II/farmacología , Animales , Bovinos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Receptores ErbB/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Metaloproteinasas de la Matriz/metabolismo , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Zona Glomerular/citología
7.
Mol Endocrinol ; 18(8): 2035-48, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15143154

RESUMEN

Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.


Asunto(s)
Angiotensina II/farmacología , Factor de Crecimiento Epidérmico/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Línea Celular , Chlorocebus aethiops , Receptores ErbB/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Péptidos y Proteínas de Señalización Intercelular , Cinética , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/metabolismo , Especificidad de Órganos , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Receptor de Angiotensina Tipo 1 , Proteínas Adaptadoras de la Señalización Shc , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Activación Transcripcional/efectos de los fármacos , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA