RESUMEN
A study on Platydracus species of Hainan Province, China is presented. Platydracushainanensis sp. nov., Platydracusaureolus sp. nov. and Platydracuszhouchenglini sp. nov. are described as new species. Platydracusmarmorellus Fauvel, 1895 and Platydracussubirideus Kraatz, 1859 are recorded from China for the first time. Habitus and diagnostic characters of all species are photographed, and a key to Platydracus species of Hainan is provided.
RESUMEN
OBJECTIVE: We aimed to investigate the role of forkhead box O1 (FoxO1) inhibitor AS1842856 (AS) in nonalcoholic steatohepatitis (NASH) mice and the potential mechanisms. METHODS: Mice were given methionine-choline-sufficient (MCS), or methionine- and choline-deficient (MCD) diet for 5 weeks, along with AS (60 mg/kg) or vehicle gavage treatment (0.2 mL/day). Body and liver weight, serum triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting glucose and insulin levels were measured. Liver macrophage infiltration and ileal ZO-1 protein expression were also detected. Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α, sterol regulatory element binding protein (SREBP)-1c, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), α-smooth muscle actin (SMA), recombinant collagen type III α1 (Col3a1), and connective tissue growth factor (Ctgf) expressions were measured. Stool samples were collected for 16S rDNA sequencing. RESULTS: Compared to the MCD group, AS attenuated liver weight, reduced serum TG, ALT, and AST levels, increased HDL-C levels, mitigated hepatic steatosis, decreased macrophage infiltration, and augmented ileal ZO-1 proteins in NASH mice. It also reduced the levels of IL-6, IL-1ß, and TNF-α, alongside with the Srebp-1c mRNA expression. However, no significant effects on Pepck, G6Pase, α-SMA, Col3a1, or Ctgf were observed. Furthermore, AS promoted diversity and altered gut microbiota composition in NASH mice, causing increased beneficial bacteria like Akkermansia muciniphila, Parabacteroides distasonis, and Prevotellamassilia, which were associated with metabolic functions. CONCLUSION: FoxO1 inhibitor AS ameliorated hepatic steatosis, inflammation, and intestinal dysbiosis in NASH mice, making it a potentially promising treatment for NASH.
Asunto(s)
Proteína Forkhead Box O1 , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Masculino , Hígado/patología , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Hepatitis/tratamiento farmacológico , Hepatitis/prevención & controlRESUMEN
Alkyne annulation has been widely used in organic synthesis for the construction of azacycles with unique structural and physicochemical properties. However, the analogous transformation of fluoroalkynes remains a challenge and has seen limited progress. Herein we report a 1,2,3,4-tetrafunctionalization of polyfluoroalkynes for the divergent construction of 5-7-membered (E)-1,2-difluorovinyl azacycles. The use of the fluorine atom as a detachable "activator" not only obviates the use of any transition metal catalysts and oxidizing reagents, but also ensures the [3-5 + 2]-annulation and defluorinative functionalization of fluoroalkynes with high chemo-, regio-, and stereoselectivities. This method exhibits a broad substrate scope, good functional group tolerance, and excellent scalability, providing a modular platform for accessing fluorinated skeletons of medicinal and biological interest. The late-stage modification of complex molecules, the multi-component 1,2-diamination of fluoroalkyne, and the synthesis of valuable organofluorides from the obtained products further highlight the real-world utility of this fluoroalkyne annulation technology.
RESUMEN
Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.
RESUMEN
The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.
RESUMEN
OBJECTIVE: To compare the detection rate and diagnostic accuracy of cardia polyps using endoscopy with blue laser imaging (BLI) and white-light imaging (WLI). METHODS: Patients were randomly divided into the BLI group and WLI group according to the endoscopic procedures. BLI followed by WLI was conducted in the BLI group, whereas WLI followed by BLI examination was conducted in the WLI group. The number, size, microstructure, and microvascular patterns of cardia polyps detected were recorded. Biopsy of the polyps was then performed. RESULTS: The detection rate of cardia polyps in the BLI group was higher than that in the WLI group (7.87% vs 4.22%, P = 0.018). The rate of overlooked lesions in the BLI group was lower than in the WLI group (0.64% vs 3.38%, P = 0.003). The diagnostic coincidence rate between magnifying BLI and histopathology was 88.16%. The sensitivity, specificity, positive predictive value and negative predictive value for the diagnosis of neoplastic lesions by magnifying endoscopy with BLI were 90.91%, 87.69%, 55.56%, and 98.28%, respectively. The most remarkable patterns for predicting inflammatory polyps were the prolonged and fine network patterns (sensitivity 71.43%, specificity 93.75%). Small round combined with honeycomb patterns were the most common among fundic gland polyps (sensitivity 80.00%, specificity 98.48%). Neoplastic lesions presented as villous or ridge-like combined with core vascular or unclear pattern for both microvascular and microstructure patterns. CONCLUSION: BLI is more effective than WLI in the detection and diagnosis of cardia polyps, and magnifying endoscopy with BLI may help diagnose such lesions.
Asunto(s)
Cardias , Estudios de Factibilidad , Neoplasias Gástricas , Humanos , Femenino , Masculino , Persona de Mediana Edad , Cardias/patología , Cardias/diagnóstico por imagen , Adulto , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Anciano , Pólipos/diagnóstico por imagen , Pólipos/diagnóstico , Gastroscopía/métodos , Sensibilidad y Especificidad , Valor Predictivo de las Pruebas , Rayos LáserRESUMEN
Microglia are endogenous immune cells in the brain, and their pyroptosis and phenotype dichotomy are proved to play roles in neurodegenerative diseases. We investigated whether and how hypoxia affected pyroptosis and phenotype polarization in mouse microglia. Primary mouse microglia and BV2 microglia were exposed to hypoxia. Pyroptosis and M1/M2 phenotype were assessed by measuring gasdermin D truncation and M1/M2 surface marker expression. Mechanisms including purinergic ionotropic receptor (P2XR), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and NOD-like receptor protein 3 (NLRP3) inflammasome were investigated. We reported hypoxia (90% N2, 5% O2 and 5% CO2) induced pyroptosis and promoted M1 phenotype polarization in primary mouse microglia and BV2 microglia, and the effect appeared after 6 h exposure. Although hypoxia (90% N2, 5% O2 and 5% CO2, 6 h) had no effect on P2X1R and P2X7R expression, it increased P2X4R expression and decreased PGC-1α expression. Interestingly, blockade of P2X4R or P2X7R abolished hypoxia-modulated PGC-1α expression, pyroptosis and M1 polarization. PGC-1α overexpression or overactivation alleviated hypoxia-induced pyroptosis and M1 polarization, while PGC-1α knockdown or deactivation promoted pyroptosis and M1 polarization under normoxic situation. Further, hypoxia induced NLRP3 expression and activated caspase-1 and induced the phosphorylation of NF-κB and reduced the phosphorylation of STAT3/6. NLRP3 inhibitor and caspase-1 inhibitor abolished hypoxia-induced pyroptosis, while NF-κB inhibitor and STAT phosphorylation inducer ameliorated hypoxia-induced M1 polarization. In addition, NF-κB activator and STAT3/6 inhibitor caused microglia M1 polarization under normoxic situation. We concluded in cultured mouse microglia, hypoxia may induce pyroptosis via P2XR/PGC-1α/NLRP3/caspase-1 pathway and trigger M1 polarization through P2XR/PGC-1α/NF-κB/STAT3/6 pathway.
Asunto(s)
Microglía , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Piroptosis , Transducción de Señal , Animales , Piroptosis/fisiología , Microglía/metabolismo , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal/fisiología , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Hipoxia de la Célula/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Cultivadas , Inflamasomas/metabolismo , Fenotipo , Hipoxia/metabolismoRESUMEN
BACKGROUND: Cervical mullerian adenosarcoma is a rare uterine sarcoma, especially in young women. Its pathological features are low-grade malignant tumors with bidirectional differentiation, and the degree of malignancy is similar to that of low-grade endometrial stromal sarcoma. This paper reports the case of a young asexual patient who has been closely followed up after tumor resection and has not had any recurrences. CASE PRESENTATION: A 20-year-old, young asexual woman was diagnosed with cervical mullerian adenosarcoma with sarcomatous overgrowth (MASO). Cervical tumor resection was performed after admission, and the resection margin was negative. After the operation, she refused to undergo secondary surgery due to fertility requirements and did not receive adjuvant treatment. The patient was closely followed up after the operation and has not yet relapsed. CONCLUSION: A young woman with cervical MASO did not receive adjuvant treatment after cervical tumor resection. For women with fertility requirements, close follow-ups should be conducted after the operation to guard against tumor recurrence and radical tumor resection should be performed as early as possible after the patient no longer requires their fertility.
Asunto(s)
Adenosarcoma , Neoplasias del Cuello Uterino , Neoplasias Uterinas , Humanos , Femenino , Adenosarcoma/cirugía , Adenosarcoma/patología , Adenosarcoma/diagnóstico , Adulto Joven , Neoplasias del Cuello Uterino/cirugía , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias Uterinas/cirugía , Neoplasias Uterinas/patología , Neoplasias Uterinas/complicaciones , Neoplasias Uterinas/diagnóstico , Conducta SexualRESUMEN
Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Cistitis Intersticial , Receptor Toll-Like 3 , Urotelio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Proliferación Celular , Cistitis Intersticial/patología , Cistitis Intersticial/metabolismo , Cistitis Intersticial/genética , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Urotelio/patología , Urotelio/metabolismoRESUMEN
Snakebite envenomation is a significant global health issue that requires specific antivenom treatments. In Taiwan, available antivenoms target a variety of snakes, but none specifically target Trimeresurus gracilis, an endemic and protected species found in the high mountain areas of Taiwan. This study evaluated the effectiveness of existing antivenoms against T. gracilis venom, focusing on a bivalent antivenom developed for Trimeresurus stejnegeri and Protobothrops mucrosquamatus (TsPmAV), as well as monovalent antivenoms for Deinagkistrodon acutus (DaAV) and Gloydius brevicaudus (GbAV). Our research involved in vivo toxicity testing in mice and in vitro immunobinding experiments using (chaotropic) enzyme-linked immunosorbent assays, comparing venoms from four pit viper species (T. gracilis, T. stejnegeri, P. mucrosquamatus, and D. acutus) with three types of antivenoms. These findings indicate that TsPmAV partially neutralized T. gracilis venom, marginally surpassing the efficacy of DaAV. In vitro tests revealed that GbAV displayed higher binding capacities toward T. gracilis venom than TsPmAV or DaAV. Comparisons of electrophoretic profiles also reveal that T. gracilis venom has fewer snake venom C-type lectin like proteins than D. acutus, and has more P-I snake venom metalloproteases or fewer phospholipase A2 than G. brevicaudus, T. stejnegeri, or P. mucrosquamatus. This study highlights the need for antivenoms that specifically target T. gracilis, as current treatments using TsPmAV show limited effectiveness in neutralizing local effects in patients. These findings provide crucial insights into clinical treatment protocols and contribute to the understanding of the evolutionary adaptation of snake venom, aiding in the development of more effective antivenoms for human health.
Asunto(s)
Crotalinae , Mordeduras de Serpientes , Trimeresurus , Serpientes Venenosas , Humanos , Ratones , Animales , Antivenenos/uso terapéutico , Venenos de Serpiente , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Víboras/toxicidadRESUMEN
BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.
Asunto(s)
Factor 7 Regulador del Interferón , Fármacos Neuroprotectores , Anciano , Animales , Humanos , Ratones , Encéfalo/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Ratones Endogámicos C57BL , Trastornos Neurocognitivos , FototerapiaRESUMEN
Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).
Asunto(s)
Deferoxamina , Ototoxicidad , Humanos , terc-Butilhidroperóxido/toxicidad , terc-Butilhidroperóxido/metabolismo , Deferoxamina/farmacología , Ototoxicidad/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Células Ciliadas Auditivas/metabolismo , Hierro/metabolismoRESUMEN
For the past decade, three-dimensional (3D) culture models have been emerging as powerful tools in translational research to overcome the limitations of two-dimensional cell culture models. Thanks to their ability to recapitulate the phenotypic and molecular heterogeneity found in numerous organs, organoids have been used to model a broad range of tumors, such as colorectal cancer. Several approaches to generate organoids exist, with protocols using either pluripotent stem cells, embryonic stem cells, or organ-restricted adult stem cells found in primary tissues, such as surgical resections as starting material. The latter, so-called patient-derived organoids (PDOs), have shown their robustness in predicting patient drug responses compared to other models. Because of their origin, PDOs are natural offspring of the patient tumor or healthy surrounding tissue, and therefore, have been increasingly used to develop targeted drugs and personalized therapies. Here, we present a new protocol to generate patient-derived colon organoids (PDCOs) from tumor and healthy tissue biopsies. We emphasize budget-friendly and reproducible techniques, which are often limiting factors in this line of research that restrict the development of this 3D-culture model to a small number of laboratories worldwide. Accordingly, we describe efficient and cost-effective techniques to achieve immunoblot and high-resolution microscopy on PDCOs. Finally, a novel strategy of lentiviral transduction of PDCOs, which could be applied to all organoid models, is detailed in this article. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of PDCOs from biopsies Basic Protocol 2: Long-term maintenance and expansion of PDCOs in BME domes Basic Protocol 3: Cryopreservation and thawing of PDCOs Basic Protocol 4: Lentiviral transduction of PDCOs Basic Protocol 5: Immunoblot and evaluation of variability between donors Basic Protocol 6: Immunofluorescence labeling and high-resolution microscopy of PDCOs Basic Protocol 7: Transcriptomic analyses of PDCOs by RT-qPCR.
Asunto(s)
Lentivirus , Neoplasias , Adulto , Humanos , Lentivirus/genética , Colon , Técnicas de Cultivo de Célula/métodos , Neoplasias/metabolismo , Neoplasias/patología , Organoides/metabolismoRESUMEN
A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.
Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva Súbita , Humanos , Masculino , Persona de Mediana Edad , Adulto , Femenino , Estudios de Cohortes , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Súbita/diagnóstico por imagen , Pérdida Auditiva Súbita/complicaciones , Pérdida Auditiva Súbita/terapia , Audición , Neuroimagen , Estudios RetrospectivosRESUMEN
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a long-lasting and incapacitating disease, and the exact factors that affect its onset and advancement are still uncertain. Thus, the main aim was to explore new biomarkers and possible therapeutic targets for IC/BPS. Next-generation high-throughput sequencing experiments were performed on bladder tissues. Based on the interactions between circRNA and miRNA, as well as miRNA and mRNA, candidates were selected to build a network of circRNA-miRNA-mRNA. The STRING database and Cytoscape software were utilized to build a protein-protein interaction (PPI) network to pinpoint the hub genes associated with IC/BPS. The expression levels of circRNA and miRNA in the network were confirmed through quantitative polymerase chain reaction. Western blot was applied to confirm the stability of the lipopolysaccharide-induced IC/BPS model, and the effect of overexpression of circ.5863 by lentivirus on inflammation. Ten circRNA-miRNA interactions involving three circRNAs and six miRNAs were identified, and IFIT3 and RSAD2 were identified as hub genes in the resulting PPI network with 19 nodes. Circ.5863 showed a statistically significant decrease in the constructed model, which is consistent with the sequencing results, and overexpression via lentiviral transfection of circ.5863 was found to alleviate inflammation damage. In this study, a circRNA-miRNA-mRNA network was successfully constructed, and IFIT3 and RSAD2 were identified as hub genes. Our findings suggest that circ.5863 can mitigate inflammation damage in IC/BPS. The identified marker genes may serve as valuable targets for future research aimed at developing diagnostic tools and more effective therapies for IC/BPS.
Asunto(s)
Cistitis Intersticial , MicroARNs , Humanos , Cistitis Intersticial/genética , ARN Circular/genética , Inflamación , Biomarcadores , MicroARNs/genética , ARN Mensajero/genéticaRESUMEN
To investigate the value of metagenomic next-generation sequencing (mNGS) in acute leukemia (AL) patients with febrile neutropenia (FN). We retrospectively reviewed 37 AL patients with FN and compared the results of mNGS with blood culture (BC) and the clinical features of the mNGS-positive group and the mNGS-negative group. A total of 14 detected pathogens were the final clinical diagnosis, of which 9 strains were detected only by mNGS and 5 strains were detected by both mNGS and BC. The top pathogens were Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. A total of 67.57% (25/37) were bacterial infections, and 2.7% (1/37) were fungal or viral infections. The diagnostic positivity rate of mNGS (25/37, 67.6%) was significantly higher than that of BC (7/37, 18.9%), and the difference was statistically significant (p < 0.05). Then, we explored the clinical distinction between the mNGS-positive group and the mNGS-negative group, and 3 features were filtered, including lymphocyte count (LY), creatinine levels (Cr), and white blood cell count (WBC). Our study demonstrated that early implementation of mNGS can effectively improve the efficacy of pathogen detection in AL patients with FN. The higher diagnostic positivity rate and the ability to detect additional pathogens compared to BC made mNGS a valuable tool in the management of infectious complications in this patient population. Furthermore, the identified clinical features associated with mNGS results provided additional insights for the clinical indication of infection in AL patients with FN.
Asunto(s)
Neutropenia Febril , Leucemia Mieloide Aguda , Humanos , Estudios Retrospectivos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Plasma , Neutropenia Febril/diagnóstico , Sensibilidad y EspecificidadRESUMEN
Background: A substantial portion of heart failure (HF) patients adherent to guideline-directed medical therapies have experienced improved ejection fraction (EF), termed HFimpEF. Glycemic variability (GV) has emerged as a critical cardiometabolic factor. However, the relation between long-term GV and the incidence of HFimpEF is still unclear. Methods: A total of 591 hospitalized HF patients with reduced EF (HFrEF, EF≤ 40%) admitted from January 2013 to December 2020 were consecutively enrolled. Repeat echocardiograms were performed at baseline and after around 12 months. The incidence of HFimpEF, defined as (1) an absolute EF improvement ≥10% and (2) a second EF > 40% and its association with long-term fasting plasma glucose (FPG) variability were analyzed. Results: During a mean follow-up of 12.2 ± 0.6 months, 218 (42.0%) patients developed HFimpEF. Multivariate analysis showed FPG variability was independently associated with the incidence of HFimpEF after adjustment for baseline HbA1c, mean FPG during follow-up and other traditional risk factors (odds ratio [OR] for highest vs. lowest quartile of CV of FPG: 0.487 [95% CI 0.257~0.910]). Evaluation of GV by alternative measures yielded similar results. Subgroup analysis revealed that long-term GV was associated with HFimpEF irrespective of glycemic levels and diabetic conditions. Conclusions: This study reveals that greater FPG variability is associated with compromised development of HFimpEF. A more stable control of glycemic levels might provide favorable effects on myocardial functional recovery in HF patients even without diabetes.
Asunto(s)
Diabetes Mellitus , Insuficiencia Cardíaca , Humanos , Estudios de Cohortes , Volumen Sistólico , Factores de RiesgoRESUMEN
Genetic factors play an important role in susceptibility to noise-induced hearing loss (NIHL). Alternative splicing (AS) is an essential mechanism affecting gene expression associated with disease pathogenesis at the post-transcriptional level, but has rarely been studied in NIHL. To explore the role of AS in the development of NIHL, we performed a comprehensive analysis of RNA splicing alterations by comparing the RNA-seq data from blood samples from NIHL patients and subjects with normal hearing who were exposed to the same noise environment. A total of 356 differentially expressed genes, including 23 transcription factors, were identified between the two groups. Of particular note was the identification of 56 aberrant alternative splicing events generated by 41 differentially expressed genes between the two groups, with exon skipping events accounting for 54% of all the differentially alternative splicing (DAS) events. The results of functional enrichment analysis showed that these intersecting DAS genes and differentially expressed genes were significantly enriched in autophagy and mitochondria-related pathways. Together, our findings provide insights into the role of AS events in susceptibility and pathogenesis of NIHL.