Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Hortic Res ; 11(6): uhae098, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863995

RESUMEN

Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.

2.
Atherosclerosis ; : 117574, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38797614

RESUMEN

BACKGROUND AND AIMS: Albuminuria is an established risk factor for adverse cardiovascular outcomes. However, few studies have characterized longitudinal albuminuria patterns based on long-term measurement of urine albumin-to-creatinine ratio (UACR) levels. We aimed to evaluate the association between longitudinal albuminuria patterns in midlife adults and subsequent CAC progression. METHODS: We included 1919 participants with CAC assessment by computed tomography from CARDIA (Coronary Artery Risk Development in Young Adults) study. CAC progression was determined for each individual as the difference of logarithmic CAC scores at follow-up and baseline. Albuminuria patterns across a 10-year span were estimated by longitudinal UACR levels. Multivariable general linear models were used to evaluate the association of long-term albuminuria patterns with CAC progression. RESULTS: Of the 1919 included participants, 583 (30.4 %) participants experienced CAC progression, and the mean (SD) age was 50.4 (3.5) years at year 25. A total of four dynamic albuminuria patterns were identified. After multivariable adjustment, there were significant differences in CAC progression by albuminuria patterns as demonstrated as percent change in CAC with 36.0 % (SE, 1.5) progression for mid- and late-life normoalbuminuria group, 46.0 % (SE, 7.6) for midlife normoalbuminuria and late-life high albuminuria group, 52.4 % (SE, 7.1) for midlife high albuminuria and late-life normoalbuminuria group, and 54.5 % (SE, 8.7) for mid- and late-life high albuminuria group (p = 0.019). Similar findings were also observed in CAC volume score changes. CONCLUSIONS: Longitudinal albuminuria patterns across a 10-year span were associated with worse CAC progression independent of baseline CAC level and albuminuria changes, suggesting that it may provide early identification of high-risk individuals with dynamic rises in albuminuria who may benefit from aggressive risk factor modification.

3.
Front Bioeng Biotechnol ; 12: 1385032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807647

RESUMEN

The exploration of the next-generation small diameter vascular grafts (SDVGs) will never stop until they possess high biocompatibility and patency comparable to autologous native blood vessels. Integrating biocompatible electrospinning (ES) matrices with highly bioactive stem cells (SCs) provides a rational and promising solution. ES is a simple, fast, flexible and universal technology to prepare extracellular matrix-like fibrous scaffolds in large scale, while SCs are valuable, multifunctional and favorable seed cells with special characteristics for the emerging field of cell therapy and regenerative medicine. Both ES matrices and SCs are advanced resources with medical application prospects, and the combination may share their advantages to drive the overcoming of the long-lasting hurdles in SDVG field. In this review, the advances on SDVGs based on ES matrices and SCs (including pluripotent SCs, multipotent SCs, and unipotent SCs) are sorted out, and current challenges and future prospects are discussed.

4.
Environ Res ; 255: 119162, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762003

RESUMEN

In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.


Asunto(s)
Compuestos de Anilina , Biodegradación Ambiental , Contaminantes Químicos del Agua , Compuestos de Anilina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Salino , Bacterias/metabolismo , Bacterias/genética , Reactores Biológicos/microbiología , Salinidad
5.
Subst Use Misuse ; : 1-9, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789408

RESUMEN

BACKGROUND: Craving is a core feature of addiction. Rumination and depression play a crucial role in the process of methamphetamine addiction. The aim of this study was to examine the relationship between rumination, depression and craving in methamphetamine patients, which has not been explored yet. METHODS: A total of 778 patients with methamphetamine user disorder (MUD) at the Xinhua Drug Rehabilitation Center, located in Mianyang City, Sichuan Province, China. We used a set of self-administered questionnaires that included socio-demographic, detailed drug use history, rumination, depression and craving information. The Rumination Response Scale (RRS) was used to measure rumination, the Beck Depression Inventory (BDI) to measure depression and the Visual Analogue Scale (VAS) to measure craving. RESULTS: There was a significant positive correlation between rumination and craving, or depression, and between depression and craving. Furthermore, depression mediated between rumination and craving, with a mediation effect of 160%. CONCLUSIONS: Our findings suggest that there is a close interrelationship between rumination, craving and depression in MUD patients, and that depression may play a mediating role between rumination and craving.


This is the first study to investigate the relationship between rumination and craving during withdrawal in methamphetamine dependent patients and the mediating role of depression.Among methamphetamine patients, it was found that reflection was positively correlated with rumination and depression, depression and craving, rumination and craving, and depression plays the mediating role between rumination and craving.These findings suggest that interventions to reduce depression and rumination may also be effective for withdrawal and relapse reduction in methamphetamine patients, providing further rationale for the treatment of methamphetamine patients.

6.
Adv Mater ; : e2313869, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688523

RESUMEN

Accumulation of pathological tau is a hallmark of Alzheimer's disease (AD), which correlates more closely with cognitive impairment than does the amyloid-ß (Aß) burden. Autophagy is a powerful process for the clearance of toxic proteins including aberrant tau. However, compromised autophagy is demonstrated in neurodegeneration including AD, and current autophagy inducers remain enormously challenging due to inability of restoring autophagy pathway and lack of targeting specificity. Here, pathogenic tau-specific autophagy based on customized nanochaperone is developed for AD treatment. In this strategy, the nanochaperone can selectively bind to pathogenic tau and maintain tau homeostasis, thereby ensuring microtubule stability which is important for autophagy pathway. Meanwhile, the bound pathogenic tau can be sequestered in autophagosomes by in situ autophagy activation of nanochaperone. Consequently, autophagosomes wrapping with pathogenic tau are able to be trafficked along the stabilized microtubule to achieve successful fusion with lysosomes, resulting in the enhancement of autophagic flux and pathologic tau clearance. After treatment with this nanochaperone-mediated autophagy strategy, the tau burden, neuron damages, and cognitive deficits of AD mice are significantly alleviated in the brain. Therefore, this work represents a promising candidate for AD-targeted therapy and provides new insights into future design of anti-neurodegeneration drugs.

7.
BMC Vet Res ; 20(1): 92, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459496

RESUMEN

BACKGROUND: With long-term research on the reproductive ability of Qianbei Ma goat, we found that the puberty of the male goats comes at the age of 3 months and reaches sexual maturity at 4 months,the male goats are identified as physically mature at 9 months and able to mate. Compared with other kinds of breeds of goats, Qianbei Ma goat is featured with more faster growth and earlier sexual maturity.Therefore, in order to explore the laws of growth of Qianbei Ma goat before sexual maturity(3-month-old)and after sexual maturity (9-month-old). The testicular tissue was collected to explore their changes in morphology through HE staining, the serum was collected to detect the hormone content, and the mRNA expression profile of the testis was analyzed by transcriptomics. In this way, the effect of testicular development on the reproduction of Qianbei ma goats was further analyzed. RESULTS: The results showed that the area and diameter of spermatogenic tubules were larger at 9 months than 3 months, and the number of spermatocytes, interstitial cells, spermatogonia and secondary spermatocytes in the lumen of the tubules showed a similar trend. The appearance of spermatozoa at age 3 months indicated that puberty had begun in Qianbei Ma goats. The Elasa test for testosterone, luteinizing hormone, follicle stimulating hormone and anti-Müllerian hormone showed that the levels of these hormones in the serum at age 9 months were all highly significantly different than those at age 3 months (P < 0.01). There were 490 differentially expressed genes (DEGs) between the (|log2(fold change)| > 1 and p value < 0.05) 3-month-old and 9-month-old groups, of which 233 genes were upregulated and 257 genes were downregulated (3 months of age was used as the control group and 9 months of age was used as the experimental group). According to the GO and KEGG enrichment analyses of DEGs, PRSS58, ECM1, WFDC8 and LHCGR are involved in testicular development and androgen secretion, which contribute to the sexual maturation of Qianbei Ma goats. CONCLUSIONS: Potential biomarker genes and relevant pathways involved in the regulation of testicular development and spermatogenesis in Qianbei Ma goats were identified, providing a theoretical basis and data support for later studies on the influence of testicular development and spermatogenesis before and after sexual maturity in Qianbei Ma goats.


Asunto(s)
Cabras , Transcriptoma , Masculino , Animales , Cabras/metabolismo , Testículo/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testosterona
8.
Artículo en Inglés | MEDLINE | ID: mdl-38530443

RESUMEN

Individuals with a history of childhood abuse (CA, including neglect and abuse by caregivers before the age of 18 years) have more severe substance dependence problems than those without a history of childhood abuse. However, whether a history of CA exacerbates craving and the mechanism of this effect remain largely unknown. The aim of this study was to explore the role of alexithymia in the effects of CA on craving in a large sample of methamphetamine-dependent individuals based on latent vulnerability theory. A total of 324 methamphetamine-dependent individuals who met DSM-5 criteria for substance use disorder were recruited. CA, alexithymia, and craving data were collected from the Childhood Trauma Questionnaire, the Toronto Alexithymia Scale-20, and the Obsessive Compulsive Drug Use Scale, respectively. t tests and ANCOVA were conducted to compare variables between the CA and non-CA groups, while partial correlation and mediation analyses were conducted to examine the potential mediating role of alexithymia in the relationship between CA and craving. Abused methamphetamine-dependent individuals reported higher levels of craving and higher levels of alexithymia than those of non-abused methamphetamine-dependent individuals. Alexithymia partially mediated the link between CA and craving, especially the effect of CA on craving frequency was fully mediated by alexithymia. Our findings reveal that a history of childhood abuse has a lasting effect on craving in stimulant-dependent individuals, and alexithymia contributes to some extent to the severity of substance abuse problems in abused methamphetamine-dependent individuals.

9.
Proc Natl Acad Sci U S A ; 121(14): e2321615121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38530892

RESUMEN

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.


Asunto(s)
Citrus , Citrus/química , Domesticación , Fitomejoramiento , Metilación , Metiltransferasas/metabolismo
10.
Adv Mater ; 36(19): e2309927, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38387609

RESUMEN

Cytokines are powerful in cancer immunotherapy, however, their therapeutic potential is limited by the severe systemic toxicity. Here a potent strategy to reduce the toxicity of systemic cytokine therapy by delivering its denatured form using a finely designed nanochaperone, is described. It is demonstrated that even if the denatured protein cargos are occasionally released under normal physiological conditions they are still misfolded, while can effectively refold into native states and release to function in tumor microenvironment. Consequently, the systemic toxicity of cytokines is nearly completely overcome. Moreover, an immunogenic cell death (ICD)-inducing chemotherapeutic is further loaded and delivered to tumor using this nanochaperone to trigger the release of tumor-associated antigens (TAAs) that are subsequently captured in situ by nanochaperone and then reflows into lymph nodes (LNs) to promote antigen cross-presentation. This optimized personalized nanochaperone-vaccine demonstrates unprecedented suppressive effects against large, advanced tumors, and in combination with immune checkpoint blockade (ICB) therapy results in a significant abscopal effect and inhibition of postoperative tumor recurrence and metastasis. Hence, this approach provides a simple and universal delivery strategy to reduce the systemic toxicities of cytokines, as well as provides a robust personalized cancer vaccination platform, which may find wide applications in cancer immunotherapy.


Asunto(s)
Antígenos de Neoplasias , Inmunoterapia , Interleucina-12 , Nanoestructuras , Animales , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Vacunas contra el Cáncer/química , Línea Celular Tumoral , Muerte Celular Inmunogénica/efectos de los fármacos , Inmunoterapia/métodos , Interleucina-12/química , Interleucina-12/metabolismo , Interleucina-12/toxicidad , Nanopartículas/química , Nanoestructuras/química , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pliegue de Proteína , Microambiente Tumoral/efectos de los fármacos
11.
Biomaterials ; 306: 122483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330742

RESUMEN

Bromodomain-containing protein 4 (BRD4) is the most well-studied BET protein that is important for the innate immune response. We recently revealed that targeting BRD4 triggers apoptosis in tumor-associated macrophages, but its role in synovial macrophages and joint inflammation is largely unknown. Herein, we demonstrated that BRD4 was highly expressed in the iNOS-positive M1 macrophages in the human and mouse osteoarthritis (OA) synovium, and conditional knockout of BRD4 in the myeloid lineage using Lyz2-cre; BRD4flox/flox mice significantly abolished anterior cruciate ligament transection (ACLT)-induced M1 macrophage accumulation and synovial inflammation. Accordingly, we successfully constructed apoptotic body-inspired phosphatidylserine-containing nanoliposomes (PSLs) loaded with the BRD4 inhibitor JQ1 to regulate inflammatory macrophages. JQ1-loaded PSLs (JQ1@PSLs) exhibited a higher cellular uptake by macrophages than fibroblast-like synoviocytes (FLSs) in vitro and in vivo, as well as the reduction in proinflammatory M1 macrophage polarization. Intra-articular injections of JQ1@PSLs showed prolonged retention within the joint, and remarkably reduced synovial inflammation and joint pain via suppressing M1 polarization accompanied by reduced TRPA1 expression by targeted inhibition of BRD4 in the macrophages, thus attenuating cartilage degradation during OA development. The results show that BRD4-inhibiting JQ1@PSLs can targeted-modulate macrophage polarization, which opens a new avenue for efficient OA therapy via a "Trojan horse".


Asunto(s)
Osteoartritis , Factores de Transcripción , Animales , Humanos , Ratones , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Osteoartritis/metabolismo , Membrana Sinovial/metabolismo , Factores de Transcripción/metabolismo
12.
Food Chem ; 444: 138613, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38325085

RESUMEN

'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, ß-myrcene, and (E)-ß-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.


Asunto(s)
Citrus sinensis , Citrus , Sesquiterpenos , Compuestos Orgánicos Volátiles , Citrus sinensis/genética , Odorantes/análisis , Multiómica , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles/análisis
13.
Food Chem ; 443: 138616, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306907

RESUMEN

Guangchenpi (GCP), which is the peel of Citrus reticulata 'Chachiensis', is widely used as an herbal medicine, tea and food ingredient in southeast Asia. Prolonging its aging process results in a more pleasant flavor and increases its profitability. Through the integration of sensory evaluation with flavoromic analysis approaches, we evaluated the correlation between the flavor attributes and the profiles of the volatiles and flavonoids of GCP with various aging years. Notably, d-limonene, γ-terpinene, dimethyl anthranilate and α-phellandrene were the characteristic aroma compounds of GCP. Besides, α-phellandrene and nonanal were decisive for consumers' perception of GCP aging time due to changes of their odor activity values (OAVs). The flavor attributes of GCP tea liquid enhanced with the extension of aging time, and limonene-1,2-diol was identified as an important flavor enhancer. Combined with machine learning models, key flavor-related metabolites could be developed as efficient biomarkers for aging years to prevent GCP adulteration.


Asunto(s)
Citrus , Monoterpenos Ciclohexánicos , Limoneno ,
14.
Am J Addict ; 33(1): 48-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37644677

RESUMEN

BACKGROUND AND OBJECTIVES: Comorbidity of substance use disorders and depression is a common phenomenon. It is well known that opioid addiction is neurobiologically distinct from psychostimulant addiction. However, direct comparisons of comorbid depressive symptoms in patients with methamphetamine (METH) use disorder (MAUD) and heroin use disorders (HUD) have been lacking until now. METHODS: A total of 353 patients with methamphetamine use disorder, 76 patients with HUD, and 203 healthy controls were recruited. The Beck Depression Inventory (BDI-SF), the Desires for Drug Questionnaire (DDQ) and the short form of the Childhood Trauma Questionnaire (CTQ-SF) were used to measure participants' depressive symptoms, drug craving, and childhood abuse or neglect, respectively. RESULTS: The prevalence of depressive symptoms was 35.41% (125/353) in MAUD and 56.57% (43/76) in MAUD, significantly higher than the 22.66% (46/203) in healthy controls. Furthermore, there was a significant difference in the total BDI score between the MAUD and HUD groups (F = 5.02, df = 1, 372, p = .026). Among MAUD, years of education, history of incarceration, month of abstinence and negative reinforcement scores were associated with depressive symptoms (all p < .05). Among HUD, duration of drug use, childhood emotional abuse and sexual abuse were associated with depressive symptoms (all p < .05). CONCLUSIONS AND SCIENTIFIC SIGNIFICANCE: The prevalence and correlates of depressive symptoms differ between MAUD and HUD, adding to the existing literature. Therefore, treatment and intervention programs should be designed to address these unique correlates in HUD and MAUD patients.


Asunto(s)
Metanfetamina , Trastornos Relacionados con Sustancias , Humanos , Masculino , Niño , Depresión/epidemiología , Depresión/psicología , Heroína , Prevalencia , China/epidemiología
15.
Cell Oncol (Dordr) ; 47(1): 343-359, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37672204

RESUMEN

BACKGROUND: Chemotherapeutic agents such as cisplatin are commonly used in patients with clinically unresectable or recurrent esophageal cancer (ESCA). However, patients often develop resistance to cisplatin, which in turn leads to a poor prognosis. Studies have shown that FAM111B may be involved in the development of tumors as an oncogene or tumor suppressor gene. However, the pathological role and corresponding mechanism of FAM111B in ESCA are still unclear. METHODS: The GEPIA web tool, ENCORI Pan-Cancer Analysis Platform and UALCAN-TCGA database were used to study the expression of FAM111B in ESCA. CCK-8, angiogenesis, Transwell and xenograft assays were applied to explore the biological function of FAM111B in ESCA. Western blot, RT-qPCR, and RNA-seq analyses were applied to study the FAM111B/GSDMA axis in the progression of ESCA cells. CCK-8 and xenograft assays were used to study the role of the FAM111B/GSDMA axis in determining the sensitivity of ESCA to cisplatin. RESULTS: Our results demonstrated that FAM111B is highly expressed in ESCA tissues compared to normal tissues. We showed that FAM111B promotes the progression of ESCC cells by binding to GSDMA and that the trypsin protease domain is essential for the activity of FAM111B. Furthermore, we showed that the FAM111B/GSDMA axis regulates cisplatin sensitivity in ESCA. CONCLUSIONS: Overall, we identified a novel FAM111B/GSDMA axis regulating ESCA tumorigenesis and chemosensitivity, at least in ESCC cells.


Asunto(s)
Proteínas de Ciclo Celular , Cisplatino , Neoplasias Esofágicas , Gasderminas , Humanos , Carcinogénesis , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica , Cisplatino/farmacología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Gasderminas/metabolismo , Sincalida , Resistencia a Antineoplásicos
16.
Arterioscler Thromb Vasc Biol ; 44(1): 156-176, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942612

RESUMEN

BACKGROUND: Senescence is a series of degenerative changes in the structure and physiological function of an organism. Whether JPX (just proximal to XIST)-a newly identified age-related noncoding RNA by us-is associated with atherosclerosis is still unknown. Our study was to investigate the role of JPX and provide insights into potential therapies targeting atherosclerosis. METHODS: We analyzed clinical data from multiple tissues including meniscus tissue, leukemia cells, and peripheral blood monocytes to identify age-related noncoding RNAs in senescent vascular smooth muscle cells (VSMCs). The molecular mechanism of JPX was investigated by capture hybridization analysis of RNA targets and chromatin immunoprecipitation. IGVTools and real-time quantitative polymerase chain reaction were used to evaluate the JPX expression during phenotype regulation in age-related disease models. The therapeutic potential of JPX was evaluated after establishing an atherosclerosis model in smooth muscle-specific Jpx knockout mice. RESULTS: JPX expression was upregulated in activated ras allele (H-rasV12)-induced senescent VSMCs and atherosclerotic arteries. JPX knockdown substantially reduced the elevation of senescence-associated secretory phenotype (SASP) genes in senescent VSMCs. Cytoplasmic DNA leaked from mitochondria via mitochondrial permeability transition pore formed by VDAC1 (voltage-dependent anion channel 1) oligomer activates the STING (stimulator of interferon gene) pathway. JPX could act as an enhancer for the SASP genes and functions as a scaffold molecule through interacting with phosphorylated p65/RelA and BRD4 (bromodomain-containing protein 4) in chromatin remodeling complex, promoting the transcription of SASP genes via epigenetic regulation. Smooth muscle knockout of Jpx in ApoeKO mice resulted in a decrease in plaque area, a reduction in SASP gene expression, and a decrease in senescence compared with controls. CONCLUSIONS: As an enhancer RNA, JPX can integrate p65 and BRD4 to form a chromatin remodeling complex, activating SASP gene transcription and promoting cellular senescence. These findings suggest that JPX is a potential therapeutic target for the treatment of age-related atherosclerosis.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Ratones , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Músculo Liso Vascular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epigénesis Genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Senescencia Celular/genética , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo
17.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 461-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36913004

RESUMEN

Depressive symptoms and aggression are common in patients with substance use disorder. Drug craving is one of the main drivers of drug-seeking behavior. This study aimed to explore the relationship between drug craving and aggression in methamphetamine use disorder (MAUD) patients with and without depressive symptoms. Totally, 613 male patients with MAUD were recruited in this study. Patients with depressive symptoms were identified by the 13-item Beck Depression Inventory (BDI-13). Drug craving and aggression were assessed by the Desires for Drug Questionnaire (DDQ) and the Buss & Perry Aggression Questionnaire (BPAQ), respectively. 374 patients (61.01%) were confirmed to meet the criteria of depressive symptoms. Patients with depressive symptoms had significantly higher DDQ and BPAQ total scores than those without depressive symptoms. DDQ desire and intention were positively correlated with verbal aggression and hostility in patients with depressive symptoms, whereas they were correlated with self-directed aggression in patients without depressive symptoms. In patients with depressive symptoms, DDQ negative reinforcement and a history of suicide attempts were independently associated with BPAQ total score. Our study suggests that male MAUD patients have a high incidence of depressive symptoms and that patients with depressive symptoms may have greater drug cravings and aggression. Depressive symptoms may play a role in the association between drug craving and aggression in patients with MAUD.


Asunto(s)
Agresión , Metanfetamina , Humanos , Masculino , Depresión , Ansia , Metanfetamina/efectos adversos , China
18.
J Agric Food Chem ; 72(1): 351-362, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38115585

RESUMEN

Volatile terpenoids accumulate in citrus and play important roles in plant defense against various stressors. However, the broad-spectrum response of terpenoid biosynthesis to ubiquitous stressors in citrus has not been comparatively investigated. In this study, volatile terpenoids were profiled under six stressors: high temperature, citrus miner, citrus red mite, citrus canker, Alternaria brown spot, and huanglongbing (HLB). Significant content changes in 15 terpenoids, including ß-ocimene, were observed in more than four of the six stressors, implying their possibly universal stress-response effects. Notably, the emission of terpenoids, including ß-caryophyllene, ß-ocimene, and nerolidol glucoside, was significantly increased by HLB in HLB-tolerant "Shatian" pomelo leaves. The upregulation of CgTPS1 and CgTPS2 and their characterization in vivo identified them as mono- or sesquiterpenoid biosynthetic genes. This study provides a foundation for determining stress resistance mechanisms in citrus and biopesticide designations for future industrial applications.


Asunto(s)
Citrus , Citrus/genética , Terpenos , Monoterpenos Acíclicos , Perfilación de la Expresión Génica , Enfermedades de las Plantas/prevención & control
19.
Acta Pharm Sin B ; 13(12): 4765-4784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045042

RESUMEN

Inflammation-driven endothelial dysfunction is the major initiating factor in atherosclerosis, while the underlying mechanism remains elusive. Here, we report that the non-canonical stimulator of interferon genes (STING)-PKR-like ER kinase (PERK) pathway was significantly activated in both human and mice atherosclerotic arteries. Typically, STING activation leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB)/p65, thereby facilitating IFN signals and inflammation. In contrast, our study reveals the activated non-canonical STING-PERK pathway increases scaffold protein bromodomain protein 4 (BRD4) expression, which encourages the formation of super-enhancers on the proximal promoter regions of the proinflammatory cytokines, thereby enabling the transactivation of these cytokines by integrating activated IRF3 and NF-κB via a condensation process. Endothelium-specific STING and BRD4 deficiency significantly decreased the plaque area and inflammation. Mechanistically, this pathway is triggered by leaked mitochondrial DNA (mtDNA) via mitochondrial permeability transition pore (mPTP), formed by voltage-dependent anion channel 1 (VDAC1) oligomer interaction with oxidized mtDNA upon cholesterol oxidation stimulation. Especially, compared to macrophages, endothelial STING activation plays a more pronounced role in atherosclerosis. We propose a non-canonical STING-PERK pathway-dependent epigenetic paradigm in atherosclerosis that integrates IRF3, NF-κB and BRD4 in inflammatory responses, which provides emerging therapeutic modalities for vascular endothelial dysfunction.

20.
Front Vet Sci ; 10: 1276673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089704

RESUMEN

Cathepsin S (CTSS) is a member of the cysteine protease family closely related to reproductive regulation in goats. However, its effect on litter size in goats remains unclear. In this study, the relationship between CTSS gene polymorphisms and litter size was revealed by analyzing the DNA sequence and mRNA expression of CTSS in the gonadal axis of Qianbei Ma goats. In addition, bioinformatics methods were used to evaluate the effect of non-synonymous mutations on CTSS protein structure and function. CTSS was expressed in all parts of the gonadal axis of Qianbei Ma goats, with the highest expression in the uterus in the multi-lamb group and in the fallopian tube in the single-lamb group. The sequencing results showed that four SNPs in CTSS, including g.7413C → T, g.8816A → T, g.9191 T → G and g.10193G → A, were significantly correlated with litter size (p < 0.05). All four analyzed mutation sites were in strong linkage disequilibrium (r2 > 0.33, D' > 0.70). Additionally, the haplotype Hap1/2 had a significantly higher frequency than the other haplotypes (p < 0.05). g.7413C → T and g.8816A → T were non-synonymous mutations. The g.7413C → T mutation resulted in the substitution of serine 161 of the CTSS protein with phenylalanine (p.S161F), and the g.8816A → T mutation resulted in the substitution of aspartate 219 with tyrosine (p.N219Y). p.S161F was highly conserved across 13 species and that p.N219Y was relatively conserved in cloven-hoofed species. Mutations at two sites changed the local conformation of the CTSS protein, reduced its stability, and affected its function and goat breed evolution. These findings confirm that CTSS affects the lambing traits of goats and provide a theoretical basis for the regulatory mechanism of CTSS in affecting litter size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA