Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25214, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318035

RESUMEN

African Swine Fever (ASF), caused by the African swine fever virus (ASFV), has inflicted significant economic losses on the pig industry in China. The key to mitigating its impact lies in accurate screening and strict biosecurity measures. In this regard, the development of colloidal gold immunochromatographic test strips (CGITS) has proven to be an effective method for detecting ASFV antibodies. These test strips are based on the ASFV p30 recombinant protein and corresponding monoclonal antibodies. The design of the test strip incorporates a high-concentration colloidal gold-labeled p30 recombinant protein as the detection sensor, utilizing Staphylococcal Protein A (SPA) as the test line (T line), and p30 monoclonal antibody as the control line (C line). The sensitivity and specificity of the test strip were evaluated after optimizing the labeling concentration, pH, and protein dosage. The research findings revealed that the optimal colloidal gold labeling concentration was 0.05 %, the optimal pH was 8.4, and the optimal protein dosage was 10 µg/mL. Under these conditions, the CGITS demonstrated a detection limit of 1:512 dilution of ASFV standard positive serum, without exhibiting cross-reactivity with antibodies against other viral pathogens. Furthermore, the test strips remained stable for up to 20 days when stored at 50 °C and 4 °C. Comparatively, the CGITS outperformed commercial ELISA kits, displaying a sensitivity of 90.9 % and a specificity of 96.2 %. Subsequently, 108 clinical sera were tested to assess its performance. The data showed that the coincidence rate between the CGITS and ELISA was 93.5 %. In conclusion, the rapid colloidal gold test strip provides an efficient and reliable screening tool for on-site clinical detection of ASF in China. Its accuracy, stability, and simplicity make it a valuable asset in combating the spread of ASF and limiting its impact on the pig industry.

2.
Eur J Med Res ; 28(1): 305, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649072

RESUMEN

BACKGROUND: Endometriosis is associated with systemic metabolic indicators, including body mass index (BMI), glucose metabolism and lipid metabolism, while the association between metabolic indexes and the occurrence and assisted reproductive technology (ART) outcome of endometriosis is unclear. We aimed to evaluate the characteristics of systemic metabolic indexes of endometriosis patients with infertility and their effects on pregnancy outcome after ART treatment. METHODS: A retrospective cohort study involve 412 endometriosis patients and 1551 controls was conducted. Primary outcome was metabolic indexes, and secondary measures consisted of the influence of metabolic indexes on the number of retrieved oocytes and ART outcomes. RESULTS: Endometriosis patients had higher insulin (INS) [6.90(5.10-9.50) vs 6.50(4.80-8.90) µU/mL, P = 0.005]. A prediction model for endometriosis combining the number of previous pregnancies, CA125, fasting blood glucose (Glu) and INS, had a sensitivity of 73.9%, specificity of 67.8% and area under curve (AUC) of 0.77. There were no significant differences in ART outcomes and complications during pregnancy. The serum levels of Glu before pregnancy were associated with GDM both in endometriosis group (aOR 12.95, 95% CI 1.69-99.42, P = 0.014) and in control group (aOR 4.15, 95% CI 1.50-11.53, P = 0.006). CONCLUSIONS: We found serum Glu is related to the number of retrieved oocytes in control group, serum INS is related to the number of retrieved oocytes in endometriosis group, while serum Glu and INS before pregnancy are related to the occurrence of GDM in two groups. A prediction model based on metabolic indexes was established, representing a promising non-invasive method to predict endometriosis patients with known pregnancy history.


Asunto(s)
Endometriosis , Femenino , Humanos , Embarazo , Estudios Retrospectivos , Oocitos , Técnicas Reproductivas Asistidas , Glucosa
3.
Mol Pain ; 19: 17448069231170072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37002193

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Asunto(s)
Síndrome del Colon Irritable , Melatonina , Dolor Visceral , Ratas , Animales , Masculino , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Ratas Sprague-Dawley , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Dolor Visceral/metabolismo , Nocicepción , Receptor de Melatonina MT2/metabolismo , Ganglios Espinales/metabolismo , Tetrodotoxina , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
4.
Biol Reprod ; 108(5): 791-801, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36721997

RESUMEN

Increasing evidences showed that ovulatory dysfunction, possibly caused by luteinized unruptured follicular follicle syndrome (LUFS), is one of the reasons for endometriosis-related infertility. The present study was conducted to explore the potential effect of elevated progesterone in follicular fluid (FF) on ovulation in endometriosis. A prospective study including 50 ovarian endometriosis patients and 50 control patients with matched pairs design was conducted with alterations in FF and peritoneal fluid (PF) components identified by metabolomics analyses and differentially expressed genes in granulosa cells (GCs) identified by transcriptome analysis. Patients with endometriosis exhibited a significantly higher progesterone level in serum, FF, and PF. Granulosa cells from endometriosis patients revealed decreased expression of HPGD, COX-2, and suppressed NF-ĸB signaling. Similarly, progesterone treatment in vitro downregulated HPGD and COX2 expression and suppressed NF-ĸB signaling in granulosa tumor-like cell line KGN (Bena Culture Collection, China) and primarily cultured GCs, as manifested by decreased expressions of IL1R1, IRAK3, reduced pIĸBα/IĸBα ratio, and nucleus translocation of p65. On the contrary, TNF-α treatment increased expression of IL1R1, IRAK3, pIĸBα, p65, and HPGD in GCs. One potential p65 binding site was identified in the promoter region of HPGD by chromatin immunoprecipitation. In conclusion, we found that intrafollicular progesterone might downregulate HPGD and COX-2 in GCs via suppressing the NF-ĸB signaling pathway, shedding light on the mechanism underlying the endometriosis-related ovulatory dysfunction.


Asunto(s)
Endometriosis , Infertilidad Femenina , Femenino , Humanos , Progesterona/farmacología , Progesterona/metabolismo , Líquido Folicular/metabolismo , Endometriosis/genética , Endometriosis/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estudios Prospectivos , Células de la Granulosa/metabolismo , Infertilidad Femenina/metabolismo
5.
Reprod Sci ; 28(3): 785-793, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33211273

RESUMEN

BNC1 is a transcription factor that is crucial for spermatogenesis and male fertility, although the underlying mechanism remains unclear. To study BNC1's specific role in spermatogenesis, we characterized a previously developed mouse model carrying a truncating mutation in Bnc1 (termed Bnc1+/tr for heterozygotes and Bnc1tr/tr for homozygotes) and found that the mutation decreased BNC1 protein levels and resulted in germ cell loss by apoptosis. Given that loss of functional Bnc1 is known to result in decreased expression of the spermatogenesis genes Ybx2 and Papolb, we aimed to explore whether and how BNC1 promotes transcription of Ybx2 and Papolb to mediate its role in spermatogenesis. We confirmed significant reduction in YBX2 and PAPOLB protein levels in testis tissue from Bnc1+/tr and Bnc1tr/tr males compared with wild-type mice (Bnc1+/+). Consistently, knockdown of Bnc1 led to downregulation of Ybx2 and Papolb in CRL-2196 cells in vitro. To investigate if BNC1 directly induces Ybx2 and Papolb gene expression, chromatin immunoprecipitation using mouse testicular tissue and luciferase reporter assays in HEK293 cells were used to identify functional binding of BNC1 to the Ybx2 and Papolb promoters at defined BNC1 binding sites. Taken together, this study reveals a mechanism for BNC1's role in spermatogenesis by directly binding to BNC1 binding elements in the promoter regions of both Ybx2 and Papolb and inducing transcription of these important spermatogenesis genes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Apoptosis , Sitios de Unión , Proliferación Celular , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Polinucleotido Adenililtransferasa/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética
6.
J Cell Mol Med ; 24(10): 5842-5849, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32285560

RESUMEN

Metabolic reprogramming has become a hot topic recently in the regulation of tumour biology. Although hundreds of altered metabolic genes have been reported to be associated with tumour development and progression, the important prognostic role of these metabolic genes remains unknown. We downloaded messenger RNA expression profiles and clinicopathological data from The Cancer Genome Atlas and the Gene Expression Omnibus database to uncover the prognostic role of these metabolic genes. Univariate Cox regression analysis and lasso Cox regression model were utilized in this study to screen prognostic associated metabolic genes. Patients with high-risk demonstrated significantly poorer survival outcomes than patients with low-risk in the TCGA database. Also, patients with high-risk still showed significantly poorer survival outcomes than patients with low-risk in the GEO database. What is more, gene set enrichment analyses were performed in this study to uncover significantly enriched GO terms and pathways in order to help identify potential underlying mechanisms. Our study identified some survival-related metabolic genes for rectal cancer prognosis prediction. These genes might play essential roles in the regulation of metabolic microenvironment and in providing significant potential biomarkers in metabolic treatment.


Asunto(s)
Genes Relacionados con las Neoplasias , Neoplasias del Recto/genética , Neoplasias del Recto/metabolismo , Bases de Datos Genéticas , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Análisis Multivariante , Pronóstico , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Factores de Riesgo , Análisis de Supervivencia , Regulación hacia Arriba/genética
7.
Zool Res ; 40(4): 337-342, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31033261

RESUMEN

Hemorrhagic septicemia is an acute, highly fatal disease that affects goldfish (Carassius auratus). To gain a better understanding of related immune genes, the transcriptomes of the skin and head kidney of goldfish suffering hemorrhagic septicemia were sequenced, assembled, and characterized. Based on functional annotation, an extensive and diverse catalog of expressed genes were identified in both the skin and head kidney. As two different organs, pair-wise comparison identified 122/77 unigenes up/down-regulated (two-fold change with P<0.05) in the skin and head kidney. Most genes of the immune pathways were expressed and isolated in both skin and head kidney, including interferon (IFN) transcription factors 1-10 and Toll-like receptors (TLRs). Interferon regulatory factor 3 (IRF3), a key IFN transcription factor, was up-regulated at the transcriptional level by polyriboinosinic: polyribocytidylic acid (poly I:C) challenge and regulated the IFN response by increasing the activity of IFN-ß and IFN-stimulated response element (ISRE)-containing promoter. This study will benefit the identification and understanding of novel genes that play important roles in the immunological reactions of fish suffering from hemorrhagic septicemia.


Asunto(s)
Enfermedades de los Peces/metabolismo , Carpa Dorada , Riñón Cefálico/metabolismo , Septicemia Hemorrágica/veterinaria , Piel/metabolismo , Transcriptoma , Animales , Enfermedades de los Peces/inducido químicamente , Septicemia Hemorrágica/inducido químicamente , Septicemia Hemorrágica/metabolismo , Poli I-C/toxicidad
8.
Am J Transl Res ; 7(10): 2115-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26692956

RESUMEN

Breast cancer is the second leading cause of cancer induced death in women. Tamoxifen is an endocrine therapy which is administered to 70% of all breast cancer patients with estrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate gene expression. Although the role of a few miRNAs has been described in tamoxifen resistance, little is known about how concerted actions of miRNAs targeting biological networks contribute to its resistance. In this study, we identified that miR-155 is frequently up-regulated in breast cancer with tamoxifen resistance. Ectopic expression of miR-155 induces cell survival and resistance to TAM, whereas inhibition of miR-155 causes cells to apoptosis and enhances TAM sensitivity. Further, we identified SOCS6 as a new direct target of miR-155. Sustained overexpression of miR-155 resulted in repression of SOCS6 protein and mRNA levels, and knockdown of miR-155 increased SOCS6 expression. Introduction of SOCS6 cDNA lacking the 3'-UTR abrogated miR-155-induced cell survival and chemoresistance. Finally, it was verified that SOCS6 or inhibition of STAT3 could inhibit miR-155 STAT3 activation and cell proliferation. In conclusion, our study reveals a molecular link between miR-155 and SOCS6-STAT3 and presents an evidence that miR-155 is a critical therapeutic target in breast cancer.

9.
Cancer Lett ; 356(2 Pt B): 483-90, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25304381

RESUMEN

Our study observed the relationship between transient receptor potential melastatin 7 (TRPM7) expression and the metastatic process of nasopharyngeal carcinoma (NPC). We found that TRPM7 was overexpressed in 102 out of 206 (49.5%) human NPC cases and was significantly associated with clinical stage and lymphatic and distant metastasis. The results suggested that TRPM7 promotes NPC cell migration and invasion in vitro. Further, TRPM7 was correlated with poor clinical outcome and was an independent predictor for 5-year overall survival rate (HR, 1.832; 95% CI, 1.237-4.146 [P = 0.041]). In conclusion, TRPM7 promotes the metastasis of NPC and may serve as a prognostic marker in NPC patients.


Asunto(s)
Movimiento Celular , Neoplasias Nasofaríngeas/secundario , Nasofaringe/metabolismo , Canales Catiónicos TRPM/metabolismo , Western Blotting , Carcinoma , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Técnicas para Inmunoenzimas , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Proteínas Serina-Treonina Quinasas , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
10.
Cell Calcium ; 47(5): 425-32, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20363498

RESUMEN

Ion channels are involved in various physiologic and pathologic processes, including the migration of tumor cells that is required for metastasis. To determine whether transient receptor potential melastatin 7 (TRPM7) Ca(2+) channels play an important role in the migration of tumor cells, we examined the potential function of TRPM7 channels in the migration of 5-8F and 6-10B human nasopharyngeal carcinoma cells. The migratory potential of 5-8F cells was significantly decreased by extracellular Ca(2+) chelator (EGTA), TRPM7 inhibitors (La(3+), 2-APB), or TRPM7 knockdown. Conversely, the addition of TRPM7 activator Bradykinin and overexpression of TRPM7 promoted the migration of 5-8F and 6-10B cells. Furthermore, the sustained Ca(2+) influx regulated by TRPM7 activated release of Ca(2+) stores via ryanodine receptors by a calcium-induced calcium release (CICR) mechanism. This study suggests, first, that Ca(2+) influx is required for the migration of human nasopharyngeal carcinoma 5-8F cells. Second, and more importantly, it identifies TRPM7 as a novel potential-regulator of the Ca(2+) influx that allows migration of 5-8F cells. TRPM7, therefore, might have potential as a prognostic indicator and as a therapeutic target in nasopharyngeal carcinoma.


Asunto(s)
Calcio/metabolismo , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Canales Catiónicos TRPM/metabolismo , Compuestos de Boro/química , Compuestos de Boro/farmacología , Bradiquinina/farmacología , Línea Celular Tumoral , Movimiento Celular , Ácido Egtácico/química , Ácido Egtácico/farmacología , Humanos , Proteínas Serina-Treonina Quinasas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA