Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 252: 109939, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570065

RESUMEN

To investigate the efficacy of Ursolic acid in alleviating neuropathic pain in rats with spinal nerve ligation (SNL), the SNL rat model was surgically induced. Different concentrations of Ursolic acid and manipulated target mitogen-activated protein kinase 1 (MAPK1) were administered to the SNL rats. Fecal samples were collected from each group of rats for 16S rDNA analysis to examine the impact of gut microbiota. Molecular docking experiments were conducted to assess the binding energy between Ursolic acid and MAPK1. In vivo studies were carried out to evaluate the expression of inflammatory factors and signaling pathways in spinal cord and colon tissues. Ursolic acid was found to have a beneficial effect on pain reduction in rats by increasing plantar withdrawal latency (PWL) and paw withdrawal threshold (PWT). Comparing the Ursolic acid group with the control group revealed notable differences in the distribution of Staphylococcus, Allobaculum, Clostridium, Blautia, Bifidobacterium, and Prevotella species. Network pharmacology analysis identified MAPK1 and intercellular adhesion molecule-1 (ICAM1) as common targets for Ursolic acid, SNL, and neuropathic pain. Binding sites between Ursolic acid and these targets were identified. Additionally, immunofluorescent staining showed a decrease in GFAP and IBA1 intensity in the spinal cord along with an increase in NeuN following Ursolic acid treatment. Overexpression of MAPK1 in SNL rats led to an increase in inflammatory factors and a decrease in PWL and PWT. Furthermore, MAPK1 counteracted the pain-relieving effects of Ursolic acid in SNL rats. Ursolic acid was found to alleviate neuropathic pain in SNL rats by targeting MAPK1 and influencing gut microbiota homeostasis.


Asunto(s)
Antígenos Nucleares , Microbioma Gastrointestinal , Proteína Quinasa 1 Activada por Mitógenos , Proteínas del Tejido Nervioso , Neuralgia , Ratas Sprague-Dawley , Triterpenos , Ácido Ursólico , Animales , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Triterpenos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Ratas , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Nervios Espinales/efectos de los fármacos , Analgésicos/farmacología , Colon/efectos de los fármacos , Colon/microbiología , Colon/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...