Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(30): 39952-39968, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39014541

RESUMEN

The durability of concrete structures can be enhanced in a convenient and permanent manner through the surface protection of cementitious materials with composite polymer coatings. However, polymer coatings are susceptible to various mechanical and physical deterioration in complex and variable environments. In this paper, the theory of polymer microstructure regulation was employed to improve the sustainability of the protective performance of composite coatings. The self-assembled core-shell structure regulated by amphiphilic Janus nanoparticles is employed to modify the tunable polystyrene acrylate-polysiloxane self-healing coatings. The results demonstrate that the adhesion strength of the prepared self-assembled coating reached 3.7 MPa, which is sufficient to resist the damage to the microstructure of cementitious materials caused by physical erosion, seepage, and ionic corrosion. The self-healing coating, regulated by Janus particles, exhibited a residual creep of only 57.03% and a maximum loss angle tangent of 0.381. Furthermore, the material exhibited a superior shape memory function due to the presence of strong hydrogen bonding. The regulated self-healing coating repaired the polymer structural damage under mechanical and thermal deformation by bridging and filling effects. The coating demonstrated a tensile strength recovery of up to 71.23% in a wetted state, accompanied by a rapid restoration of its electrochemical properties and corrosion resistance. Furthermore, the self-healing emulsion penetrates the substrate defects and forms numerous polymer crystalline particles that effectively fill the microcracks.

2.
RSC Adv ; 14(20): 13972-13983, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38686302

RESUMEN

With the increasing global concern over carbon emissions, geopolymers have garnered significant attention due to their energy-saving, waste utilization, and eco-friendly advantages. Metakaolin and slag, as aluminum-containing mineral materials in geopolymer production, have been widely studied and applied. Previous research has mainly focused on performance design and theoretical development, while the underlying mechanisms at the microscopic level remain unclear. In this study, we employed molecular dynamics simulations to investigate the microscale reaction behavior of geopolymers, exploring the induction process and structural evolution during the initial stages, and revealing the similarities and differences under alkali activation for different materials. Our findings indicate that the alkali activation process can be divided into two stages: mineral crystal deconstruction and oligomer polymerization. The role of NaOH differs between low-calcium and high-calcium systems, where in the low-calcium system, Na+ substitutes Ca2+ due to Ca2+ deficiency, participating in the formation of the network framework. Moreover, the high-calcium system exhibits a faster formation of the gel phase during alkali activation compared to the low-calcium system. This study provides valuable insights into the research and application of geopolymers.

3.
Angew Chem Int Ed Engl ; 63(5): e202317393, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38062863

RESUMEN

Organic electrode materials have attracted a lot interest in batteries in recent years. However, most of them still suffer from low performance such as low electrode potential, slow reaction kinetics, and short cycle life. In this work, we report a strategy of fabricating donor-acceptor (D-A) conjugated polymers for facilitating the charge transfer and therefore accelerating the reaction kinetics by using the copolymer (p-TTPZ) of dihydrophenazine (PZ) and thianthrene (TT) as a proof-of-concept. The D-A conjugated polymer as p-type cathode could store anions and exhibited high discharge voltages (two plateaus at 3.82 V, 3.16 V respectively), a reversible capacity of 152 mAh g-1 at 0.1 A g-1 , excellent rate performance with a high capacity of 124.2 mAh g-1 at 10 A g-1 (≈50 C) and remarkable cyclability. The performance, especially the rate capability was much higher than that of its counterpart homopolymers without D-A structure. As a result, the p-TTPZ//graphite full cells showed a high output voltage (3.26 V), a discharge specific capacity of 139.1 mAh g-1 at 0.05 A g-1 and excellent rate performance. This work provides a novel strategy for developing high performance organic electrode materials through molecular design and will pave a way towards high energy density organic batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...