Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncol Rep ; 51(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606513

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumor. Currently, the predominant clinical treatment is the combination of surgical resection with concurrent radiotherapy and chemotherapy, using temozolomide (TMZ) as the primary chemotherapy drug. Lidocaine, a widely used amide­based local anesthetic, has been found to have a significant anticancer effect. It has been reported that aberrant hepatocyte growth factor (HGF)/mesenchymal­epithelial transition factor (MET) signaling plays a role in the progression of brain tumors. However, it remains unclear whether lidocaine can regulate the MET pathway in GBM. In the present study, the clinical importance of the HGF/MET pathway was analyzed using bioinformatics. By establishing TMZ­resistant cell lines, the impact of combined treatment with lidocaine and TMZ was investigated. Additionally, the effects of lidocaine on cellular function were also examined and confirmed using knockdown techniques. The current findings revealed that the HGF/MET pathway played a key role in brain cancer, and its activation in GBM was associated with increased malignancy and poorer patient outcomes. Elevated HGF levels and activation of its receptor were found to be associated with TMZ resistance in GBM cells. Lidocaine effectively suppressed the HGF/MET pathway, thereby restoring TMZ sensitivity in TMZ­resistant cells. Furthermore, lidocaine also inhibited cell migration. Overall, these results indicated that inhibiting the HGF/MET pathway using lidocaine can enhance the sensitivity of GBM cells to TMZ and reduce cell migration, providing a potential basis for developing novel therapeutic strategies for GBM.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Lidocaína , Humanos , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Lidocaína/farmacología , Lidocaína/uso terapéutico , Transducción de Señal , Temozolomida/uso terapéutico
2.
Exp Ther Med ; 27(4): 169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476917

RESUMEN

As the global population ages, the prevalence of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease and stroke continues to increase. Therefore, it is necessary to develop preventive and therapeutic methods against neuroinflammatory diseases. Lipofundin is a lipid emulsion commonly used in clinical anesthetic solvents and nutritional supplements. Lipid emulsions have been shown to possess anti-inflammatory properties. However, the potential beneficial effect of lipofundin against neuroinflammation requires elucidation. In the present study, two cell models were used to investigate the efficacy of lipofundin against neuroinflammation. In the first model, BV2 mouse microglial cells were treated with lipopolysaccharide (LPS) to induce nitric oxide (NO) production as a model of neuroinflammation. In the second model, HMC3 human microglial were activated by LPS, and changes in the secretion of factors associated with inflammation were analyzed using Luminex xMAP® technology. Griess assay results revealed that lipofundin significantly prevented and treated LPS-induced NO production. An anti-neuroinflammatory effect was also observed in HMC3 cells, where lipofundin exhibited excellent preventive and therapeutic properties by reducing the LPS-induced expression and secretion of interleukin-1ß. Notably, lipofundin also promoted the secretion of certain growth factors, suggesting a potential neuroprotective effect. These results demonstrate that, in addition to its role as a solvent for drugs and nutritional support, lipofundin may also have beneficial effects in alleviating the progression of neuroinflammation. These findings may serve as an important reference for future translational medicine applications.

3.
Biomed Pharmacother ; 170: 116077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154274

RESUMEN

Hepatitis D virus (HDV), which co-infects or superinfects patients with hepatitis B virus, is estimated to affect 74 million people worldwide. Chronic hepatitis D is the most severe form of viral hepatitis and can result in liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Currently, there are no efficient HDV-specific drugs. Therefore, there is an urgent need for novel HDV therapies that can achieve a functional cure or even eliminate the viral infection. In the HDV life cycle, agents targeting the entry step of HDV infection preemptively reduce the intrahepatic viral RNA. Human sodium taurocholate co-transporting polypeptide (hNTCP), a transporter of bile acids on the plasma membrane of hepatocytes, is an essential entry receptor of HDV and is a promising molecular target against HDV infection. Here, we investigated the effect of ergosterol peroxide (EP) on HDV infection in vitro and in vivo. EP inhibited HDV infection of hNTCP-expressing dHuS-E/2 hepatocytes by interrupting the early fusion/endocytosis step of HDV entry. Furthermore, molecular modeling suggested that EP hinders LHBsAg binding to hNTCP by blocking access to S267 and V263. In addition, we generated hNTCP-expressing transgenic (Tg) C57BL/6 mice using the Cre/loxP system for in vivo study. EP reduced the liver HDV RNA level of HDV-challenged hNTCP-Cre Tg mice. Intriguingly, EP downregulated the mRNA level of liver IFN-γ. We demonstrate that EP is a bona fide HDV entry inhibitor that acts on hNTCP and has the potential for use in HDV therapies.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis D , Neoplasias Hepáticas , Simportadores , Ratones , Animales , Humanos , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones Endogámicos C57BL , Hepatitis D/tratamiento farmacológico , Hepatitis D/patología , Virus de la Hepatitis B/fisiología , Hepatocitos , Ratones Transgénicos , Simportadores/metabolismo
4.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175410

RESUMEN

Glioblastoma (GBM) is a malignant brain tumor, commonly treated with temozolomide (TMZ). Upregulation of A disintegrin and metalloproteinases (ADAMs) is correlated to malignancy; however, whether ADAMs modulate TMZ sensitivity in GBM cells remains unclear. To explore the role of ADAMs in TMZ resistance, we analyzed changes in ADAM expression following TMZ treatment using RNA sequencing and noted that ADAM17 was markedly upregulated. Hence, we established TMZ-resistant cell lines to elucidate the role of ADAM17. Furthermore, we evaluated the impact of ADAM17 knockdown on TMZ sensitivity in vitro and in vivo. Moreover, we predicted microRNAs upstream of ADAM17 and transfected miRNA mimics into cells to verify their effects on TMZ sensitivity. Additionally, the clinical significance of ADAM17 and miRNAs in GBM was analyzed. ADAM17 was upregulated in GBM cells under serum starvation and TMZ treatment and was overexpressed in TMZ-resistant cells. In in vitro and in vivo models, ADAM17 knockdown conferred greater TMZ sensitivity. miR-145 overexpression suppressed ADAM17 and sensitized cells to TMZ. ADAM17 upregulation and miR-145 downregulation in clinical specimens are associated with disease progression and poor prognosis. Thus, miR-145 enhances TMZ sensitivity by inhibiting ADAM17. These findings offer insights into the development of therapeutic approaches to overcome TMZ resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Línea Celular Tumoral , MicroARNs/metabolismo , Regulación hacia Abajo , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Proteína ADAM17/genética , Proteína ADAM17/metabolismo
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242510

RESUMEN

α-Viniferin, a natural stilbene compound found in plants and a polymer of resveratrol, had demonstrated potential anti-cancer and anti-inflammatory effects. However, the specific mechanisms underlying its anti-cancer activity were not yet fully understood and required further investigation. This study evaluated the effectiveness of α-viniferin and ε-viniferin using MTT assay. Results showed that α-viniferin was more effective than ε-viniferin in reducing the viability of NCI-H460 cells, a type of non-small cell lung cancer. Annexin V/7AAD assay results provided further evidence that the decrease in cell viability observed in response to α-viniferin treatment was due to the induction of apoptosis in NCI-H460 cells. The present findings indicated that treatment with α-viniferin could stimulate apoptosis in cells by cleaving caspase 3 and PARP. Moreover, the treatment reduced the expression of SIRT1, vimentin, and phosphorylated AKT, and also induced AIF nuclear translocation. Furthermore, this research provided additional evidence for the effectiveness of α-viniferin as an anti-tumor agent in nude mice with NCI-H460 cell xenografts. As demonstrated by the TUNEL assay results, α-viniferin promoted apoptosis in NCI-H460 cells in nude mice.

6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614283

RESUMEN

Chondrosarcoma is the second most common type of bone cancer. Surgical resection is the best choice for clinical treatment. High-grade chondrosarcoma is destructive and is more possible to metastasis, which is difficult to remove using surgery. Doxorubicin (Dox) is the most commonly used chemotherapy drug in the clinical setting; however, drug resistance is a major obstacle to effective treatment. In the present study, we compared Dox-resistant SW1353 cells to their parental cells using RNA sequencing (RNA-Seq). We found that the apelin (APLN) pathway was highly activated in resistant cells. In addition, tissue array analysis also showed that APLN was higher in high-grade tissues compared to low-grade tissues. APLN is a member of the adipokine family, which is a novel secreted peptide with multifunctional and biological activities. Previously, studies have shown that inhibition of the APLN axis may have a therapeutic benefit in cancers. However, the role of APLN in chondrosarcoma is completely unclear, and no related studies have been reported. During in vitro experiments, APLN was also observed to be highly expressed and secreted in Dox-resistant cells. Once APLN was knocked down, it could effectively improve its sensitivity to Dox. We also explored possible upstream regulatory microRNAs (miRNAs) of APLN through bioinformatics tools and the results disclosed that miR-631 was the most likely regulator of APLN. Furthermore, the expression of miR-631 was lower in the resistant cells, but overexpression of miR-631 in the Dox-resistant cell lines significantly increased the Dox sensitivity. These results were also observed in another chondrosarcoma cell line, JJ012 cells. Taken together, these findings will provide rationale for the development of drug resistance biomarkers and therapeutic strategies for APLN pathway inhibitors to improve the survival of patients with chondrosarcoma.


Asunto(s)
Apelina , Neoplasias Óseas , Condrosarcoma , Doxorrubicina , Resistencia a Antineoplásicos , MicroARNs , Humanos , Apelina/genética , Apelina/metabolismo , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/genética , Condrosarcoma/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , MicroARNs/genética , MicroARNs/uso terapéutico
7.
Virol J ; 19(1): 163, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253859

RESUMEN

BACKGROUND: Hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is a small, defective RNA virus strongly associated with the most severe form of hepatitis and progressive chronic liver disease and cirrhosis. Chronic hepatitis D, resulting from HBV/HDV coinfection, is considered to be the most severe form of viral hepatitis and affects 12-20 million people worldwide. Involved in the endocytosis and exocytosis of cellular and viral proteins, clathrin contributes to the pathogenesis and morphogenesis of HDV. Previously, we demonstrated that HDV-I and -II large hepatitis delta antigens (HDAg-L) possess a putative clathrin box that interacts with clathrin heavy chain (CHC) and supports HDV assembly. METHODS: Virus assembly and vesicular trafficking of HDV virus-like particles (VLPs) were evaluated in Huh7 cells expressing HDV-I, -II and -III HDAg-L and hepatitis B surface antigen (HBsAg). To elucidate the interaction motif between HDAg-L and CHC, site-directed mutagenesis was performed to introduce mutations into HDAg-L and CHC and analyzed using coimmunoprecipitation or pull-down assays. RESULTS: Comparable to HDV-I virus-like particles (VLPs), HDV-III VLPs were produced at a similar level and secreted into the medium via clathrin-mediated post-Golgi vesicular trafficking. Mutation at F27 or E33 of CHC abolished the binding of CHC to the C-terminus of HDV-III HDAg-L. Mutation at W207 of HDV-III HDAg-L inhibited its association with CHC and interfered with HDV-III VLP formation. We elucidated mechanism of the binding of HDV-III HDAg-L to CHC and confirmed the pivotal role of clathrin binding in the assembly of genotype III HDV. CONCLUSIONS: A novel W box which was identified at the C terminus of HDV-III HDAg-L is known to differ from the conventional clathrin box but also interacts with CHC. The novel W box of HDAg-L constitutes a new molecular target for anti-HDV-III therapeutics.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis Delta , Clatrina/metabolismo , Cadenas Pesadas de Clatrina/genética , Cadenas Pesadas de Clatrina/metabolismo , Genotipo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis Delta/genética , Antígenos de Hepatitis delta/química , Antígenos de Hepatitis delta/genética , Antígenos de Hepatitis delta/metabolismo , Humanos , ARN Viral/metabolismo , Proteínas Virales/genética , Replicación Viral
8.
Food Funct ; 13(18): 9481-9495, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35993118

RESUMEN

Obesity is a chronic disease that may lead to the development of metabolic diseases, cardiovascular diseases, and cancers and has been predicted to affect one billion adults by 2030. Owing to the pivotal role of the gut microbiota in health, including metabolism and energy homeostasis, dietary fiber, the primary energy resource for the gut microbiota, not only helps reduce appetite and short-term food intake but also modulates the structure of the gut microbiota. In this study, we investigated whether high-amylose maize (HAM), with a particular amount of dietary fiber, improves dysmetabolism and gut microbiota dysbiosis in diet-induced obese mice. Promisingly, the HAM dietary intervention not only reduced body weight gain, adipocyte hypertrophy, and dyslipidemia but also mitigated non-alcoholic fatty liver disease, insulin resistance, impaired glucose tolerance, and inflammation in the liver and epididymal white adipose tissues in high-fat diet (HFD)-fed obese mice. In addition, the HAM dietary intervention ameliorated gut microbiota dysbiosis in HFD-fed mice. Changes in families, genera, and species of gut biota that have a relative abundance of 0.01% in at least one group were scrutinized. At the species level, HAM dietary intervention increased Bifidobacterium pseudolongum, Bifidobacterium animalis, Bifidobacterium bifidum, and Lactobacillus paraplantarum and decreased Streptococcus agalactiae, Mucispirillum schaedleri, and Alistipes indistinctus. This change in the gut microbiota driven by the HAM diet was strongly associated with obesity-related indices, highlighting the nutraceutical potential of HAM for improving overall metabolic health. Taken together, this study demonstrates the potential of the HAM diet for mediating metabolic syndrome and gut microbiota dysbiosis.


Asunto(s)
Microbioma Gastrointestinal , Amilosa , Animales , Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta , Disbiosis/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Zea mays
9.
Nutrients ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684095

RESUMEN

Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-ß1- or IL-1ß-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-ß1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, p-SMAD2, p-SMAD3, and ABCG2 expression in A549 cells. Furthermore, ε-viniferin was found to significantly inhibit lung metastasis in A549 cell xenograft metastatic mouse models. In view of these findings, α-viniferin and ε-viniferin may play an important role in the prevention of EMT and cancer metastasis in lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Benzofuranos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/patología , Ratones , Estilbenos , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/genética , Vimentina/metabolismo
10.
Biochem Biophys Res Commun ; 591: 130-136, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33454058

RESUMEN

The coronavirus disease (COVID-19) pandemic, resulting from human-to-human transmission of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to a global health crisis. Given that the 3 chymotrypsin-like protease (3CLpro) of SARS-CoV-2 plays an indispensable role in viral polyprotein processing, its successful inhibition halts viral replication and thus constrains virus spread. Therefore, developing an effective SARS-CoV-2 3CLpro inhibitor to treat COVID-19 is imperative. A fluorescence resonance energy transfer (FRET)-based method was used to assess the proteolytic activity of SARS-CoV-2 3CLpro using intramolecularly quenched fluorogenic peptide substrates corresponding to the cleavage sequence of SARS-CoV-2 3CLpro. Molecular modeling with GEMDOCK was used to simulate the molecular interactions between drugs and the binding pocket of SARS-CoV-2 3CLpro. This study revealed that the Vmax of SARS-CoV-2 3CLpro was about 2-fold higher than that of SARS-CoV 3CLpro. Interestingly, the proteolytic activity of SARS-CoV-2 3CLpro is slightly more efficient than that of SARS-CoV 3CLpro. Meanwhile, natural compounds PGG and EGCG showed remarkable inhibitory activity against SARS-CoV-2 3CLpro than against SARS-CoV 3CLpro. In molecular docking, PGG and EGCG strongly interacted with the substrate binding pocket of SARS-CoV-2 3CLpro, forming hydrogen bonds with multiple residues, including the catalytic residues C145 and H41. The activities of PGG and EGCG against SARS-CoV-2 3CLpro demonstrate their inhibition of viral protease activity and highlight their therapeutic potentials for treating SARS-CoV-2 infection.


Asunto(s)
Catequina/análogos & derivados , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Taninos Hidrolizables/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Sitios de Unión , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Catequina/química , Catequina/metabolismo , Catequina/farmacología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios Proteicos , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
11.
Mol Med Rep ; 25(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859260

RESUMEN

Among the different types of oral cancer, >90% of cases are oral squamous cell carcinoma (OSCC). 5­fluorouracil (5­FU) is a commonly used treatment for OSCC, but cells typically display resistance to the drug. Propofol, an intravenous anesthetic agent, exhibits certain anticancer effects, including the inhibition of cancer cell proliferation, migration and invasion. Secreted proteins, such as growth factors and cytokines are involved in cancer development and progression, but the effect of propofol on secreted proteins in OSCC is not completely understood. An MTT assay, flow cytometry and western blotting were performed to determine the anticancer effects of propofol. The secretion profile of OSCC was determined using an antibody array, and clinical importance was assessed using the Gene Expression Profiling Interactive Analysis database. The results were verified by performing reverse transcription­quantitative PCR (RT­qPCR) and western blotting. 5­FU­resistant cells were established to determine the role of the gene of interest in drug resistance. The results demonstrated that propofol decreased cell viability and promoted cell apoptosis. The antibody array results showed that propofol attenuated the secretion of multiple growth factors. The bioinformatics results indicated that amphiregulin (AREG) was expressed at significantly higher levels in cancer tissues, which was also related to poor prognosis. The results of RT­qPCR and western blotting revealed that propofol decreased AREG expression. Pretreatment with exogenous recombinant AREG increased EGFR activation and conferred propofol resistance. Moreover, the results indicated that the expression and activation of AREG was also related to 5­FU resistance, but propofol ameliorated 5­FU drug resistance. Therefore, the present study suggested that propofol combination therapy may serve as an effective treatment strategy for OSCC.


Asunto(s)
Anfirregulina/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Propofol/farmacología , Anfirregulina/genética , Anfirregulina/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Humanos , Hipnóticos y Sedantes/farmacología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Células Tumorales Cultivadas
12.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769297

RESUMEN

Pulsed radiofrequency (PRF) works by delivering short bursts of radiofrequency to a target nerve, thereby affecting nerve signal transduction to reduce pain. Although preliminary clinical investigations have shown that PRF treatment can be used safely as an alternative interventional treatment in patients with refractory pain conditions, unexpected damage to a normal nerve/ganglion is still one of the possible complications of using the PRF strategy. Noxious pain may also be triggered if PRF treatment accidentally damages an intact nerve. However, few studies in the literature have described the intracellular modifications that occur in neuronal cells after PRF stimulation. Therefore, in this study, we evaluated the effects of PRF on unimpaired nerve function and investigated the potential mechanisms of PRF-induced pain. Wistar rats were stimulated with 30-60 V of PRF for 6 min, and mechanical allodynia, cold hypersensitivity, cytokine and matrix metalloproteinase (MMP) production, and mitogen-activated protein kinase activity (p38 MAPK, ERK1/2, JNK/SAPK) were analyzed. The results indicated that PRF stimulation induced a significant algesic effect and nociceptive response. In addition, the protein array and Western blotting analyses showed that the clinical application of 60 V of PRF can induce the activation of MAPKs and the production of inflammatory cytokines and MMPs in the lumbar dorsal horn, which is necessary for nerve inflammation, and it can be suppressed by MAPK antagonist treatment. These results indicate that PRF stimulation may induce inflammation of the intact nerve, which in turn causes inflammatory pain. This conclusion can also serve as a reminder for PRF treatment of refractory pain.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina/terapia , Ganglios Espinales/inmunología , Hiperalgesia/terapia , Tratamiento de Radiofrecuencia Pulsada/efectos adversos , Médula Espinal/inmunología , Animales , Síndromes Periódicos Asociados a Criopirina/etiología , Síndromes Periódicos Asociados a Criopirina/metabolismo , Citocinas/metabolismo , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , Dolor , Distribución Aleatoria , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Food Chem Toxicol ; 158: 112617, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34728247

RESUMEN

This study investigated the effects and molecular mechanisms of ε-viniferin and α-viniferin in non-small cell lung cancer cell line A549, melanoma cell line A2058, and osteosarcoma cell lines HOS and U2OS. Results showed ε-viniferin having antiproliferative effects on HOS, U2OS, and A549 cells. Compared with ε-viniferin at the same concentration, α-viniferin had higher antiproliferative effects on HOS cells, but not the same effect on U2OS and A549 cells. Lower dose combination of α-viniferin and ε-viniferin had more synergistic effects on A549 cells than either drug alone. α-Viniferin induced apoptosis in HOS cells by decreasing expression of phospho-c-Jun-N-terminal kinase 1/2 (p-JNK1/2) and increasing expression of cleaved Poly (ADP-ribose) polymerase (PARP), whereas α-viniferin in combination with ε-viniferin induced apoptosis in A549 cells by decreasing expression of phospho-protein kinase B (p-AKT) and increasing expression of cleaved PARP and cleaved caspase-3. ε-Viniferin and α-viniferin have not been studied using in vivo tumor models for cancer. This research is the first showing that ε-viniferin treatment resulted in significant inhibition of tumor growth in A549-cell xenograft-bearing nude mice compared with the control group. Consequently, ε-viniferin and α-viniferin may prove to be new approaches and effective therapeutic agents for osteosarcoma and lung cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzofuranos/farmacología , Necrosis/metabolismo , Estilbenos/farmacología , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Osteosarcoma/metabolismo
14.
Antiviral Res ; 195: 105184, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34627935

RESUMEN

Hepatitis B virus (HBV) infection leads to severe liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). More than 257 million individuals are chronically infected, particularly in the Western Pacific region and Africa. Although nucleotide and nucleoside analogues (NUCs) and interferons (IFNs) are the standard therapeutics for HBV infection, none eradicates HBV covalently closed circular DNA (cccDNA) from the infected hepatocytes. In addition, long-term treatment with NUCs increases the risk of developing drug resistance and IFNs may cause severe side effects in patients. Thus, a novel HBV therapy that can achieve a functional cure, or even complete elimination of the virus, is highly desirable. Regarding the HBV life cycle, agents targeting the entry step of HBV infection reduce the intrahepatic cccDNA pool preemptively. The initial entry step in HBV infection involves interaction between the pre-S1 domain of the large hepatitis B surface protein (LHBsAg) and the sodium taurocholate cotransporting polypeptide (NTCP), which is a receptor for HBV. In this study, ergosterol peroxide (EP) was identified as a new inhibitor of HBV entry. EP inhibits an early step of HBV entry into DMSO-differentiated immortalized primary human hepatocytes HuS-E/2 cells, which were overexpressed NTCP. Also, EP interfered directly with the NTCP-LHBsAg interaction by acting on the NTCP. In addition, EP had no effect on HBV genome replication, virion integrity or virion secretion. Finally, the activity of EP against infection with HBV genotypes A-D highlights the therapeutic potential of EP for fighting HBV infection.


Asunto(s)
Ergosterol/análogos & derivados , Virus de la Hepatitis B/fisiología , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Internalización del Virus/efectos de los fármacos , ADN Circular/metabolismo , Ergosterol/farmacología , Células Hep G2 , Hepatitis B/patología , Hepatitis B/virología , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Humanos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Replicación Viral
15.
Oncol Lett ; 21(6): 443, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33868481

RESUMEN

Drug resistance and disease recurrence are important contributors for the poor prognosis of glioblastoma multiforme (GBM). Temozolomide (TMZ), the standard chemotherapy for GBM treatment, can methylate DNA and cause the formation of double-strand breaks (DSBs). X-ray repair cross complementing 5 (XRCC5), also known as Ku80 or Ku86, is required for the repair of DSBs. The present study identified novel determinants that sensitize cells to TMZ, using an array-based short hairpin (sh)RNA library. Then, cBioportal, Oncomine, and R2 databases were used to analyze the association between gene expression levels and clinical characteristics. Subsequently, lentiviral shRNA or pCMV was used to knockdown or overexpress the gene of interest, and the effects on TMZ sensitivity were determined using a MTT assay and western blot analysis. TMZ-resistant cells were also established and were used in in vitro and in vivo experiments to analyze the role of the gene of interest in TMZ resistance. The results indicated that XRCC5 was effective in enhancing TMZ cytotoxicity. The results from the bioinformatics analysis revealed that XRCC5 mRNA expression levels were associated with clinical deterioration and lower overall survival rates. In addition, XRCC5 knockdown could significantly increase TMZ sensitivity in GBM cells, while XRCC5 overexpression caused the cancer cells to be resistant to TMZ. Both the in vivo and in vitro experiments showed that TMZ treatment could induce expression of XRCC5 in TMZ-resistant cells. Taken together these findings suggested that XRCC5 could be a promising target for GBM treatment and could also be used as a diagnostic marker for refractory GBM.

16.
BMC Complement Med Ther ; 20(1): 376, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302947

RESUMEN

BACKGROUND: Obesity and its associated diseases have become a major world-wide health problem. Purple-leaf Tea (Camellia sinensis L.) (PLT), that is rich of anthocyanins, has been shown to have preventive effects on obesity and metabolic disorders. The intestinal microbiota has been shown to contribute to inflammation, obesity, and several metabolic disorders. However, whether PLT consumption could prevent obesity and diet-induced metabolic diseases by modulating the gut microbiota, is not clearly understood. METHODS: In this study, six-week-old male C57BL/6 J mice were fed a normal diet (ND) or a high fat diet (HFD) without or with PLT for 10 weeks. RESULTS: PLT modulated the gut microbiota in mice and alleviated the symptoms of HFD-induced metabolic disorders, such as insulin resistance, adipocyte hypertrophy, and hepatic steatosis. PLT increased the diversity of the microbiota and the ratio of Firmicutes to Bacteroidetes. f_Barnesiellaceae, g_Barnesiella, f_Ruminococcaceae, and f_Lachnospiraceae were discriminating faecal bacterial communities of the PLT mice that differed from the HFD mice. CONCLUSIONS: These data indicate that PLT altered the microbial contents of the gut and prevented microbial dysbiosis in the host, and consequently is involved in the modulation of susceptibility to insulin resistance, hepatic diseases, and obesity that are linked to an HFD.


Asunto(s)
Adiposidad/efectos de los fármacos , Camellia sinensis , Hígado Graso/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Dieta Alta en Grasa , Disbiosis/etiología , Disbiosis/prevención & control , Hígado Graso/complicaciones , Hiperlipidemias/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/microbiología , Fitoterapia , Extractos Vegetales/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-32595752

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is common worldwide and closely associated with metabolic dysfunction. NAFLD leads to a higher risk of development of severe liver diseases, such as nonalcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma (HCC). To date, no pharmacotherapy targeting NAFLD has received general approval. Adlay is a plant that has been used as traditional herbal medicine in Asia and is a promising candidate to solve this global issue. We have established a mouse model of NAFLD by feeding a high-fat diet (HFD) for 10 weeks. Here, ethanolic or water extracts of adlay seed (ASE and ASW, respectively), mixed with HFD, were fed to the mice for 10 weeks. The ASE and ASW treatment ameliorated hyperglycemia and improved the glucose tolerance and insulin resistance in the HFD mice. Hyperlipidemia in HFD mice was prevented by the ASE and ASW diet. In addition, the ASE and ASW supplementation attenuated hepatic steatosis and inflammation, improved liver function, and caused no harm to the kidneys. Moreover, the mechanism of the effect of ASE and ASW on inhibiting hepatic lipogenesis and inducing fatty acid ß-oxidation was certified by the simulated human fatty liver cell model. Our study showed the regulatory potential of the extracts of adlay seeds for alleviating NAFLD, as well as related liver and metabolic diseases.

18.
J Mol Neurosci ; 70(10): 1461-1470, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32472393

RESUMEN

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumor. The present standard treatment for GBM has not been effective; therefore, the prognosis remains dramatically poor and prolonged survival after treatment is still limited. The new therapeutic strategies are urgently needed to improve the treatment efficiency. Doxorubicin (Dox) has been widely used in the treatment of many cancers for decades. In recent years, with the advancement of delivery technology, more and more research indicates that Dox has the opportunity to be used in the treatment of GBM. Amphiregulin (AREG), a ligand of the epidermal growth factor receptor (EGFR), has been reported to have oncogenic effects in many cancer cell types and is implicated in drug resistance. However, the biological function and molecular mechanism of AREG in Dox treatment of GBM are still unclear. Here, we demonstrate that knockdown of AREG can boost Dox-induced endoplasmic reticulum (ER) stress to trigger activation in both autophagy and apoptosis in GBM cells, ultimately leading to cell death. To explore the importance of AREG in the clinic, we used available bioinformatics tools and found AREG is highly expressed in GBM tumor tissues that are associated with poor survival. In addition, we also used antibody array analysis to dissect pathways that are likely to be activated by AREG. Taken together, our results revealed AREG can serve as a potential therapeutic target and a promising biomarker in GBM.


Asunto(s)
Anfirregulina/genética , Apoptosis , Autofagia , Neoplasias Encefálicas/metabolismo , Estrés del Retículo Endoplásmico , Glioblastoma/metabolismo , Anfirregulina/metabolismo , Antineoplásicos/toxicidad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Doxorrubicina/toxicidad , Glioblastoma/genética , Glioblastoma/patología , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo
19.
BMC Complement Med Ther ; 20(1): 68, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32126993

RESUMEN

BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor in children and adolescents and has also been associated with a high degree of malignancy and enhanced metastatic capacity. Curcumin (CUR) is well known for its anti-osteosarcoma activity. However, both demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC) are natural curcumin analogues/congeners from turmeric whose role in osteosarcoma development remains unknown. METHODS: To evaluate the growth inhibitory effects of CUR, DMC and BDMC on osteosarcoma (HOS and U2OS), breast (MDA-MB-231), and melanoma (A2058) cancer cells, we employed the MTT assay, annexin V-FITC /7-AAD staining, and clonogenic assay. RESULTS: CUR,DMC, and BDMC all decreased the viability of HOS, U2OS, MDA-MB-231, and A2058 cancer cells. Additionally, CUR,DMC, and BDMC induced the apoptosis of HOS cells through activation of Smad 2/3 or repression of Akt signaling pathway. Furthermore, the combination of CUR,DMC, and BDMC synergistically reduced cell viability, colony formation and increased apoptosis than either two or a single agent in HOS cells. CONCLUSIONS: The combination of these three compounds could be used as a novel target for the treatment of osteosarcoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Diarilheptanoides/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Smad/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Curcumina/química , Curcumina/farmacología , Diarilheptanoides/química , Quimioterapia Combinada , Humanos , Estructura Molecular , Transducción de Señal
20.
Mol Carcinog ; 59(3): 293-303, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31916307

RESUMEN

Chondrosarcoma is the second most common form of bone cancer and is characterized by its ability to produce an extracellular matrix of the cartilage. High-grade chondrosarcoma is highly aggressive and can metastasize to other parts of the body. Chondrosarcoma is resistant to both conventional chemotherapy and radiotherapy; hence, the current main treatment is still surgical resection. Doxorubicin (Dox) has been shown to significantly improve patient survival compared with untreated chondrosarcoma. However, for patients with metastasis, surgical resection alone can hardly treat them. In addition, drug resistance is one of the leading causes of death in patients with chondrosarcoma. Secreted proteins can mediate cell-cell interactions in the cancer microenvironment, which may be associated with the development of drug resistance. In the present study, chondrosarcoma cells were treated with Dox, the conditioned medium was then collected and changes in secreted proteins were analyzed using the antibody array. Results showed that the Dox-treated group had the highest secretion of basic fibroblast growth factor (bFGF), indicating the effect of bFGF on Dox sensitivity in chondrosarcoma. Furthermore, lentiviral-mediated knockdown and treatment of exogenous recombinant protein were employed to further investigate the effect of bFGF on Dox resistance. Results demonstrated that bFGF can promote the expression of X-ray repair cross-complementing protein 5 (XRCC5), leading to Dox resistance. Secreted bFGF is likely to be detected in serum, in addition to being a biomarker for predicting Dox resistance, the combination of Dox and bFGF/XRCC5 blockers may be a new therapeutic strategy to improve the efficacy of Dox in future.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Condrosarcoma/tratamiento farmacológico , Doxorrubicina/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Autoantígeno Ku/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Condrosarcoma/genética , Condrosarcoma/metabolismo , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA