Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Med (Wars) ; 19(1): 20240973, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919547

RESUMEN

The malfunction of endothelial progenitor cells (EPCs) due to ox-LDL is a risk contributor for arteriosclerotic disease. Meanwhile, lycopene possesses anti-inflammatory and antioxidative qualities. This investigation aimed to determine if lycopene can protect EPCs from ox-LDL-induced damage and to elucidate the underlying mechanism. The effects of lycopene on the survival, migration, and tube-forming capacity of EPCs were determined via in vitro assays. Expression of proteins related to pyroptosis and cellular proteins related to AMPK/mTOR/NLRP3 signaling was determined by western blot/flow cytometry. Our results demonstrated that lycopene treatment significantly enhanced proliferation, tube formation, and migration of EPCs stimulated by ox-LDL. Additionally, lycopene was found to suppress pyroptosis in ox-LDL-induced EPCs through the activation of AMPK, which led to the inhibition of mTOR phosphorylation and subsequent downregulation of the downstream NLRP3 inflammasome. In summary, our study suggests that lycopene mitigates ox-LDL-induced dysfunction in EPCs and inhibits pyroptosis via AMPK/mTOR/NLRP3 signaling. Our study suggests that lycopene may act as promising therapies for preventing atherosclerosis.

2.
Cell Commun Signal ; 20(1): 30, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279183

RESUMEN

BACKGROUND: Percutaneous transluminal coronary angioplasty (PTCA) represents an efficient therapeutic method for atherosclerosis but conveys a risk of causing restenosis. Endothelial colony-forming cell-derived exosomes (ECFC-exosomes) are important mediators during vascular repair. This study aimed to investigate the therapeutic effects of ECFC-exosomes in a rat model of atherosclerosis and to explore the molecular mechanisms underlying the ECFC-exosome-mediated effects on ox-LDL-induced endothelial injury. METHODS: The effect of ECFC-exosome-mediated autophagy on ox-LDL-induced human microvascular endothelial cell (HMEC) injury was examined by cell counting kit-8 assay, scratch wound assay, tube formation assay, western blot and the Ad-mCherry-GFP-LC3B system. RNA-sequencing assays, bioinformatic analysis and dual-luciferase reporter assays were performed to confirm the interaction between the miR-21-5p abundance of ECFC-exosomes and SIPA1L2 in HMECs. The role and underlying mechanism of ECFC-exosomes in endothelial repair were explored using a high-fat diet combined with balloon injury to establish an atherosclerotic rat model of vascular injury. Evans blue staining, haematoxylin and eosin staining and western blotting were used to evaluate vascular injury. RESULTS: ECFC-exosomes were incorporated into HMECs and promoted HMEC proliferation, migration and tube formation by repairing autophagic flux and enhancing autophagic activity. Subsequently, we demonstrated that miR-21-5p, which is abundant in ECFC-exosomes, binds to the 3' untranslated region of SIPA1L2 to inhibit its expression, and knockout of miR-21-5p in ECFC-exosomes reversed ECFC-exosome-decreased SIPA1L2 expression in ox-LDL-induced HMEC injury. Knockdown of SIPA1L2 repaired autophagic flux and enhanced autophagic activity to promote cell proliferation in ox-LDL-treated HMECs. ECFC-exosome treatment attenuated vascular endothelial injury, regulated lipid balance and activated autophagy in an atherogenic rat model of vascular injury, whereas these effects were eliminated with ECFC-exosomes with knockdown of miR-21-5p. CONCLUSIONS: Our study demonstrated that ECFC-exosomes protect against atherosclerosis- or PTCA-induced vascular injury by rescuing autophagic flux and inhibiting SIAP1L2 expression through delivery of miR-21-5p. Video Abstract.


Asunto(s)
Aterosclerosis , Exosomas , MicroARNs , Lesiones del Sistema Vascular , Animales , Apoptosis , Aterosclerosis/metabolismo , Autofagia , Células Cultivadas , Células Endoteliales/metabolismo , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Lesiones del Sistema Vascular/metabolismo
3.
Bioengineered ; 13(1): 1126-1136, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35258406

RESUMEN

This study aims to determine the effect of exogenous hydrogen sulfide (H2S) under high glucose (HG)-induced injury in endothelial progenitor cells (EPCs), and to explore the possible underlying mechanisms. Mononuclear cells were isolated from the peripheral blood of healthy volunteers by density-gradient centrifugation and identified as late EPCs by immunofluorescence and flow cytometry. EPCs were treated with high concentrations of glucose, H2S, Baf-A1, 3-MA or rapamycin. Cell proliferation, cell migration and tube formation were measured using cell counting kit-8, Transwell migration and tube formation assays, respectively. Cellular autophagy flux was detected by RFP-GFP-LC3, and Western blotting was used to examine the protein expression levels of LC3B, P62, and phosphorylated endothelial nitric oxide synthase (eNOS) at Thr495 (p-eNOSThr495). Reactive oxygen species (ROS) levels were measured using a DHE probe. H2S and rapamycin significantly reversed the inhibitory effects of HG on the proliferation, migration, and tube formation of EPCs. Moreover, H2S and rapamycin led to an increase in the number of autophagosomes accompanied by a failure in lysosomal turnover of LC3-II or p62 and p-eNOSThr495 expression and ROS production under the HG condition. However, Baf-A1 and 3-MA reversed the effects of H2S on cell behavior. Collectively, exogenous H2S ameliorated HG-induced EPC dysfunction by promoting autophagic flux and decreasing ROS production by phosphorylating eNOSThr495.


Asunto(s)
Células Progenitoras Endoteliales , Autofagia , Células Progenitoras Endoteliales/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Humanos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Sirolimus/farmacología
4.
Hortic Res ; 7(1): 128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32821411

RESUMEN

Sponge gourd (Luffa cylindrica) is an important cultivated vegetable and medicinal plant in the family Cucurbitaceae. In this study, a draft genome sequence of the sponge gourd inbred line P93075 was analyzed. Using Illumina, PacBio, and 10× Genomics sequencing techniques as well as new assembly techniques such as FALCON and chromatin interaction mapping (Hi-C), a chromosome-scale genome of approximately 656.19 Mb, with an N50 scaffold length of 48.76 Mb, was generated. From this assembly, 25,508 protein-coding gene loci were identified, and 63.81% of the whole-genome consisted of transposable elements, which are major contributors to the expansion of the sponge gourd genome. According to a phylogenetic analysis of conserved genes, the sponge gourd lineage diverged from the bitter gourd lineage approximately 41.6 million years ago. Additionally, many genes that respond to biotic and abiotic stresses were found to be lineage specific or expanded in the sponge gourd genome, as demonstrated by the presence of 462 NBS-LRR genes, a much greater number than are found in the genomes of other cucurbit species; these results are consistent with the high stress resistance of sponge gourd. Collectively, our study provides insights into genome evolution and serves as a valuable reference for the genetic improvement of sponge gourd.

5.
Stem Cell Res Ther ; 11(1): 97, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127037

RESUMEN

BACKGROUND: Hypoxia is a major cause of beta cell death and dysfunction after transplantation. The aim of this study was to investigate the effect of exosomes derived from mesenchymal stem cells (MSCs) on beta cells under hypoxic conditions and the potential underlying mechanisms. METHODS: Exosomes were isolated from the conditioned medium of human umbilical cord MSCs and identified by WB, NTA, and transmission electron microscopy. Beta cells (ßTC-6) were cultured in serum-free medium in the presence or absence of exosomes under 2% oxygen conditions. Cell viability and apoptosis were analysed with a CCK-8 assay and a flow cytometry-based annexin V-FITC/PI apoptosis detection kit, respectively. Endoplasmic reticulum stress (ER stress) proteins and apoptosis-related proteins were detected by the WB method. MiRNAs contained in MSC exosomes were determined by Illumina HiSeq, and treatment with specific miRNA mimics or inhibitors of the most abundant miRNAs was used to reveal the underlying mechanism of exosomes. RESULTS: Exosomes derived from MSC-conditioned culture medium were 40-100 nm in diameter and expressed the exosome markers CD9, CD63, CD81, HSP70, and Flotillin 1, as well as the MSC markers CD73, CD90, and CD105. Hypoxia significantly induced beta cell apoptosis, while MSC exosomes remarkably improved beta cell survival. The WB results showed that ER stress-related proteins, including GRP78, GRP94, p-eIF2α and CHOP, and the apoptosis-related proteins cleaved caspase 3 and PARP, were upregulated under hypoxic conditions but were inhibited by MSC exosomes. Moreover, the p38 MAPK signalling pathway was activated by hypoxia and was inhibited by MSC exosomes. The Illumina HiSeq results show that MSC exosomes were rich in miR-21, let-7 g, miR-1246, miR-381, and miR-100. After transfection with miRNA mimics, the viability of beta cells under hypoxia was increased significantly by miR-21 mimic, and the p38 MAPK and ER stress-related proteins in beta cells were downregulated. These changes were reversed after exosomes were pretreated with miR-21 inhibitor. CONCLUSIONS: Exosomes derived from MSCs could protect beta cells against apoptosis induced by hypoxia, largely by carrying miR-21, alleviating ER stress and inhibiting p38 MAPK signalling. This result indicated that MSC exosomes might improve encapsulated islet survival and benefit diabetes patients.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Exosomas/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
J Cancer ; 10(26): 6726-6737, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31777602

RESUMEN

Background: Abnormal DNA methylation of is one of the important mechanisms leading to tumor pathogenesis. The purpose of this study was to explore differentially methylated genes that may drive the development of renal clear cell carcinoma through a comprehensive analysis of the TCGA database. Materials and methods: Methylation data and RNA-seq data for clear cell renal cell carcinoma were downloaded from The Cancer Genome Atlas (TCGA). Differentially methylated genes and the differential genes associated with survival were then screened by MethylMix R package and univariate Cox proportional-hazards model, respectively. Their common genes were then intersected and obtained for further analysis. Correlation of gene expression and methylation levels, gene set enrichment analysis (GSEA) enrichments, survival curve, and ROC curve plotting for DNA methylation-driven genes were finally performed. The methylation alterations of the three genes were validated via two GEO datasets (GSE70303 and GSE113501), and the genes expression level was verified through two GEO datasets (GSE6344 and GSE53757). Results: Three novel DNA methylation-driven genes LAT, HOXD3 and NFE2L3 were identified in clear cell renal cell carcinoma. Expression analysis further revealed that hypomethylation levels of LAT and NFE2L3 showed higher gene expression levels, while HOXD3 exhibited opposite methylation-expression pattern. The CpG sites of LAT (cg16462073), HOXD3 (cg24000528) and NFE2L3 (cg16882373) that may affect respective gene expressions were also identified. For the survival analysis, we found that hypomethylation and over-expression of LAT and NFE2L3 were correlated with poor survival, while hypermethylation and low-expression HOXD3 was correlated with poor survival of clear cell renal cell carcinoma patients. In addition, GSEA KEGG analysis and biological processes of these genes were also enriched for functional analysis. Kaplan-Meier survival and ROC analyses of these genes showed an average risk score of 0.9140593, AUC = 0.692, which suggested a good clinical application value. Finally, the opposite methylation-expression pattern of these three genes were verified in GEO datasets. Conclusions: In this study, we successfully exhibited the potential DNA methylation-driven genes LAT, HOXD3, and NFE2L3 involved in clear cell renal cell carcinoma. Moreover, gene functions and prognostic risk models were also elucidated, which facilitated the expansion of the current study on the role of methylation in the pathology process of clear cell renal cell carcinoma.

7.
J Cell Physiol ; 234(11): 21060-21075, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31020657

RESUMEN

MicroRNAs have emerged as key regulators involved in a variety of biological processes. Previous studies have demonstrated that miR-192/215 participated in progression of Crohn's disease and colorectal cancer. However, their concrete relationships and regulation networks in diseases remain unclear. Here, we used bioinformatics methods to expound miR-192/215-5p macrocontrol regulatory networks shared by two diseases. For data mining and figure generation, several miRNA prediction tools, Human miRNA tissue atlas, FunRich, miRcancer, MalaCards, STRING, GEPIA, cBioPortal, GEO databases, Pathvisio, Graphpad Prism 6 software, etc . are extensively applied. miR-192/215-5p were specially distributed in colon tissues and enriched biological pathways were closely associated with human cancers. Emerging role of miR-192/215-5p and their common pathways in Crohn's disease and colorectal cancer was also analyzed. Based on results derived from multiple approaches, we identified the biological functions of miR-192/215-5p as a tumor suppressor and link Crohn's disease and colorectal cancer by targeting triglyceride synthesis and extracellular matrix remodeling pathways.


Asunto(s)
Neoplasias Colorrectales/genética , Enfermedad de Crohn/genética , MicroARNs/genética , Neoplasias Colorrectales/metabolismo , Biología Computacional , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/metabolismo , Matriz Extracelular/metabolismo , Genes Supresores de Tumor , Humanos , Redes y Vías Metabólicas/genética , Triglicéridos/biosíntesis
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 26(6): 1858-1862, 2018 Dec.
Artículo en Chino | MEDLINE | ID: mdl-30501734

RESUMEN

Mesenchymal stem cells (MSC) have the potential of multi-directional differentiation, and can recruit endothelial cells, promote their proliferation, migration and angiogenesis, improve blood perfusion and oxygen suppliment, and repair damaged tissue. Exosome secreted by MSC contain mother cell-specific proteins, lipids and nucleic acids, and acts as signaling molecule, playing an important role in cell communication, thereby altering target cell function. In this review, the biological characteristics of MSC and its exosome, the mechanism of promoting vascular regeneration in patients with ischemic diseases, and the mechanism of hypoxia-inducible factor-1α(HIF-1α) in the vascular ischemia of ischemic diseases are all summarized briefly.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Diferenciación Celular , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neovascularización Patológica , Neovascularización Fisiológica
9.
J Integr Plant Biol ; 60(10): 956-969, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29727045

RESUMEN

Recent studies in Arabidopsis have revealed that some VQ motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ10 and WRKY8, and show that VQ10 and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the VQ motif of VQ10 are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VQ10 protein was exclusively localized in the nucleus, and VQ10 was predominantly expressed in siliques. VQ10 expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-related hormones. Phenotypic analysis showed that disruption of VQ10 increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expression of VQ10 enhanced resistance to B. cinerea. Consistent with these findings, expression of the defense-related PLANT DEFENSIN1.2 (PDF1.2) gene was decreased in vq10 mutant plants, after B. cinerea infection, but increased in VQ10-overexpressing transgenic plants. Taken together, our findings provide evidence that VQ10 physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/patogenicidad , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
10.
Front Plant Sci ; 7: 980, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458467

RESUMEN

The hybrids between Luffa acutangula (L.) Roxb. and L.cylindrica (L.) Roem. have strong heterosis effects. However, some reproductive isolation traits hindered their normal hybridization and fructification, which was mainly caused by the flowering time and hybrid pollen sterility. In order to study the genetic basis of two interspecific reproductive isolation traits, we constructed a genetic linkage map using an F2 population derived from a cross between S1174 [L. acutangula (L.) Roxb.] and 93075 [L. cylindrica (L.) Roem.]. The map spans 1436.12 CentiMorgans (cM), with an average of 8.11 cM among markers, and consists of 177 EST-SSR markers distributed in 14 linkage groups (LG) with an average of 102.58 cM per LG. Meanwhile, we conducted colinearity analysis between the sequences of EST-SSR markers and the genomic sequences of cucumber, melon and watermelon. On the basis of genetic linkage map, we conducted QTL mapping of two reproductive isolation traits in sponge gourd, which were the flowering time and hybrid male sterility. Two putative QTLs associated with flowering time (FT) were both detected on LG 1. The accumulated contribution of these two QTLs explained 38.07% of the total phenotypic variance (PV), and each QTL explained 15.36 and 22.71% of the PV respectively. Four QTLs for pollen fertility (PF) were identified on LG 1 (qPF1.1 and qPF1.2), LG 3 (qPF3) and LG 7 (qPF7), respectively. The percentage of PF explained by these QTLs varied from 2.91 to 16.79%, and all together the four QTLs accounted for 39.98% of the total PV. Our newly developed EST-SSR markers and linkage map are very useful for gene mapping, comparative genomics and molecular marker-assisted breeding. These QTLs for interspecific reproductive isolation will also contribute to the cloning of genes relating to interspecific reproductive isolation and the utilization of interspecific heterosis in sponge gourd in further studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...