Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Water Res ; 259: 121842, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38820735

RESUMEN

Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36612525

RESUMEN

The huge energy consumption of metro operations has become a significant challenge faced by the urban public transportation sector to achieve low-carbon development. Using Shenzhen as an example, this study has made efforts to quantify the metro's energy consumption and carbon emission intensity during the operation phase by using the Life Cycle Assessment approach. Furthermore, this study evaluates the actions that can be taken to reduce energy consumption and emissions. A comparative analysis between metros and other public transportation modes has also been conducted. The results show that the annual carbon emissions from the metro's operation phase in Shenzhen city increased from 63,000 t CO2e in 2005 to 1.3 Mt CO2e in 2021, and the historically accumulated carbon emissions are 9.5 Mt CO2e. The unit operating mileage, the unit station area, and the per capita carbon emission intensity were 2.1 kg CO2e/km, 132.5 kg CO2e/m2, and 0.6 kg CO2e per capita (13th Five-Year Plan Period), respectively. By continually promoting the low-carbon operation of the subway, the cumulative carbon savings could reach 0.1 Mt CO2e (2022-2035).


Asunto(s)
Carbono , Transportes , Dióxido de Carbono/análisis
3.
J Environ Sci (China) ; 32: 189-95, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26040745

RESUMEN

It is important to develop efficient and economic techniques for removing volatile organic compounds (VOCs) in indoor air. Heterogeneous TiO2-based semiconductors are a promising technology for achieving this goal. Anatase/brookite/rutile tricrystalline TiO2 with mesoporous structure was synthesized by a low-temperature hydrothermal route in the presence of HNO3. The obtained samples were characterized by X-ray diffraction and N2 adsorption-desorption isotherm. The photocatalytic activity was evaluated by photocatalytic decomposition of toluene in air under UV light illumination. The results show that tricrystalline TiO2 exhibited higher photocatalytic activity and durability toward gaseous toluene than bicrystalline TiO2, due to the synergistic effects of high surface area, uniform mesoporous structure and junctions among mixed phases. The tricrystalline TiO2 prepared at RHNO3=0.8, containing 80.7% anatase, 15.6% brookite and 3.7% rutile, exhibited the highest photocatalytic activity, about 3.85-fold higher than that of P25. The high activity did not significantly degrade even after five reuse cycles. In conclusion, it is expected that our study regarding gas-phase degradation of toluene over tricrystalline TiO2 will enrich the chemistry of the TiO2-based materials as photocatalysts for environmental remediation and stimulate further research interest on this intriguing topic.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Contaminación del Aire Interior/análisis , Titanio/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Contaminantes Atmosféricos/efectos de la radiación , Catálisis , Cristalización , Restauración y Remediación Ambiental , Oxidación-Reducción , Procesos Fotoquímicos , Tolueno/aislamiento & purificación , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/efectos de la radiación
4.
J Environ Sci (China) ; 27: 232-40, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25597682

RESUMEN

In order to efficiently remove volatile organic compounds (VOCs) from indoor air, one-dimensional titanate nanotubes (TiNTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene (94%), exceeding that of P25 (44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity (20%-80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25.


Asunto(s)
Ácido Acético/química , Contaminantes Atmosféricos/química , Contaminación del Aire Interior , Nanopartículas/química , Titanio/química , Tolueno/química , Nanotubos/química , Fotólisis , Rayos Ultravioleta , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA