Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(9): 16027-16039, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859240

RESUMEN

We present the theory and experimental results of a microwave photonic (MWP) filter based instantaneous frequency measurement system. A quantum dash mode-locked laser is used as an optical frequency comb source. With up to 41 flat comb lines and a real-time feedback loop for comb shaping, a set of MWP filters with linear frequency responses for either linear unit or dB unit are experimentally demonstrated. The maximum measurement frequency can be up to 20 GHz limited by the available test-and-measurement instruments. By using one MWP filter, the root-mean-square error is 51∼66 MHz, which can be improved to 42.2 MHz for linear unit, and 30.7 MHz for dB unit by using two MWP filters together.

2.
Appl Opt ; 63(1): 167-178, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175018

RESUMEN

Visible light communications (VLC) is a promising solution as an alternative for the fully occupied radio frequency bands in the near future. The rear (tail) and front of vehicles have lamps that can be used for vehicular visible light communications (VVLC) systems. However, one of the main challenges of VLC systems is the line-of-sight (LoS) blockage issue. In this paper, we propose the installation of intelligent reflecting surfaces (IRSs) (i.e., smart mirrors) on the back of vehicles to overcome the issue in VVLC systems. We assume three different patterns of angular distribution for the radiation intensity: a commercially available LED with an asymmetrical pattern (Philips Luxeon Rebel), a symmetrical Lambertian pattern, and an asymmetrical Gaussian pattern. In the first section of this paper, we obtain the channel model for the IRS-assisted VVLC systems, then we investigate the path loss results versus link distance under different conditions such as weather type (clear, rainy, moderate fog, and thick fog) and radiation patterns. Moreover, the impact of system parameters such as the aperture size of the photodetector (PD), side-to-side and front-to-front distances, the number of IRS elements, and the IRS area are studied. In the second part, we derive a closed-form expression for the maximum achievable link distance versus the probability of error for the IRS-assisted VVLC systems. In addition, in this section we analyze the impact of the parameters in a single-photon avalanche diode (SPAD), background noise, and the system parameters for the path loss.

3.
Opt Express ; 32(1): 217-229, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175050

RESUMEN

We investigate the capabilities and limitations of quantum-dash mode-locked lasers (QD-MLLDs) as optical frequency comb sources in coherent optical communication systems. We demonstrate that QD-MLLDs are on par with conventional single-wavelength narrow linewidth laser sources and can support high symbol rates and modulation formats. We manage to transmit 64 quadrature amplitude modulation (QAM) signals up to 80 GBd over 80 km of standard single-mode fiber (SSMF), which highlights the distinctive phase noise performance of the QD-MLLD. Using a 38.5 GHz (6 dB bandwidth) silicon photonic (SiP) modulator, we achieve a maximum symbol rate of 104 GBd with 16QAM signaling and a maximum net rate of 416 Gb/s per carrier in a single polarization setup and after 80 km-SSMF transmission. We also compare QD-MLLD performance with commercial narrow-linewidth integrable tunable laser assemblies (ITLAs) and explore their potential for use as local oscillators (LOs) and signal carriers. The QD-MLLD has 45 comb lines usable for transmission at a frequency spacing of 25 GHz, and an RF linewidth of 35 kHz.

4.
Appl Opt ; 62(32): 8696-8701, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38037987

RESUMEN

We demonstrate photonic beamforming using a quantum-dash (QD) optical frequency comb (OFC) source. Thanks to the 25 GHz free spectral range (FSR) and up to 40 comb lines available from the QD OFC, we can implement phased antenna arrays (PAAs) with directional radiation and scanning. We consider two types of PAAs: a uniform linear array (ULA) and a uniform planar array (UPA). By selecting different comb lines with a programmable optical filter, we can tune the FSR of the OFC source and realize a discrete scanning function. We evaluate the beam squint of the ULAs, and the results show that we can achieve broadband operation. Finally, we show that we can achieve both directional radiation and scanning simultaneously using the UPA.

5.
Sci Rep ; 13(1): 12965, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563146

RESUMEN

Optical layer attacks on optical fiber communication networks are one of the weakest reinforced areas of the network, allowing attackers to overcome security software or firewalls when proper safeguards are not put into place. Encrypting data using a random phase mask is a simple yet effective way to bolster the data security at the physical layer. Since the interactions of the random phases used for such encryption heavily depend on system properties like data rate, modulation format, distance, degree of phase randomness, laser properties, etc., it is important to determine the optimum operating conditions for different scenarios. In this work, assuming that the transmitter and the receiver have a secret pre-shared key, we present a theoretical study of security in such a system through mutual information analysis. Next, we determine operating conditions which ensure security for 4-PSK, 16-PSK, and 128-QAM formats through numerical simulation. Moreover, we provide an experimental demonstration of the system using 16-QAM modulation. We then use numerical simulation to verify the efficacy of the encryption and study two preventative measures for different modulation formats which will prevent an eavesdropper from obtaining any data. The results demonstrate that the system is secure against a tapping attack if an attacker has no information of the phase modulator and pre-shared key.

6.
Opt Lett ; 48(14): 3661-3664, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450719

RESUMEN

To develop an adaptive modulation scheme for flexible high-speed multi-user visible light communication (VLC), automatic modulation classification (AMC) is adopted for monitoring the modulation formats of different subcarrier groups. An AMC scheme based on a joint convolutional neural network (CNN), active learning (AL), and data augmentation (DA) is demonstrated over an orthogonal frequency division multiplexing access (OFDMA) VLC system. The configuration of the diffuse white-light VLC system is combined with a pair integrated transceiver module, a light-diffusing fiber (LDF), and a wireless channel, which can provide white-light illumination and ubiquitous access. Within the forward error correction (FEC) threshold, the data rates of the white-light VLC links can reach 325.5 Mbps with a bit error rate (BER) of 2.163 × 10-3. An experiment with two-user access via the proposed VLC link with an unequal bandwidth allocation was demonstrated. The performance of the AL-aided CNN AMC scheme also shows a classification accuracy rate of 95.48% for the constellation diagrams of different subcarriers of the OFDMA signal over 240 training samples and faster convergence than a CNN-based AMC.


Asunto(s)
Luz , Iluminación , Difusión , Redes Neurales de la Computación
7.
Opt Express ; 31(2): 1214-1223, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785161

RESUMEN

We propose and experimentally demonstrate a polarization independent subwavelength grating (SWG) waveguide Bragg grating (WBG) by using an SWG waveguide with tilted segments. By optimizing the tilting angle and other geometry parameters, such as the width and the length of the loading segments used to create the BG, we can obtain a zero birefringence tilted SWG waveguide and consequently, a polarization independent SWG WBG. In our simulations, the optimal tilting angle is ∼ 58°, whereas the optimal angle obtained in fabrication is ∼ 46°. This deviation is mainly due to fabrication errors, e.g., on the sidewall angle of the silicon segments. For the optimal tilting angle of 46°, the characterized Bragg wavelengths of the TE and TM modes are both ∼ 1517 nm. We believe that the proposed device can have applications in optical communications and interconnections.

8.
Opt Express ; 30(22): 39643-39651, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298911

RESUMEN

We propose and demonstrate an electrically reconfigurable waveguide Bragg grating filters in silicon-on-insulator using a multiple-contact heater element. There are six electrical pads connected to the heater element in an equidistant manner. These electrical pads allow to create different heat, and corresponding refractive index, distributions across the grating so that the local Bragg wavelength corresponding to the heated segments can be controlled. In turn, this control over the heat distribution allows the device to be reconfigured to implement different filter spectral responses. These filters are applicable for both wavelength division multiplexing systems and optical signal processing applications. As a verification, we demonstrate the generation of two (or more) separate filter bands with a spacing up to 35 nm or a Fabry-Pérot cavity with a 1.6 nm free-spectral range. Moreover, we explain a firm and accurate simulation framework of the proposed device based on COMSOL Multiphysics and the transfer matrix method, which is in excellent agreement with our experimental measurements.

9.
Opt Lett ; 47(5): 1133-1136, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230309

RESUMEN

We demonstrate a reconfigurable microwave photonic (MWP) filter using a quantum dash (QDash) mode-locked laser (MLL) that can generate an optical frequency comb (OFC) with ∼50 comb lines and a free spectral range of 25 GHz. Thanks to the large number of comb lines, the MWP filter responses can be easily programmed by tailoring the OFC spectrum. We implement MWP filter responses with Gaussian, sinc, flat-top, and multiple peaks, as well as demonstrate that tuning of the central frequency. We achieve a minimum 3 dB bandwidth of ∼100 MHz for a sinc-shaped MWP filter, while the maximum out-of-band rejection can be up to ∼30 dB with Gaussian apodization. Our results show that the QDash-MLL is a promising OFC source for developing integrated and reconfigurable MWP filters.

10.
Opt Express ; 29(9): 14006-14015, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985126

RESUMEN

Dual-frequency optoelectronic oscillators (OEOs) have potential applications in dual-band wireless networking and dual-parameter sensing systems. We propose a dual-frequency OEO incorporating a multiband microwave photonic filter (MPF). In particular, the two microwave signals are generated simultaneously in a single OEO cavity. By simply varying the parameters of optical spectral slicing and sampling (e.g., with a programmable optical filter) used to implement the MPF, we can readily achieve simultaneous tuning of the dual-frequency output, as well as alternate switching between single-frequency and dual-frequency output. The multi-passband nature of the MPF, enabled via optical spectral slicing, opens a path to multi-frequency OEO operation by scaling our scheme in the future. Such a structure provides a flexible way to generate simultaneously tunable and reconfigurable multi-frequency microwave signals.

11.
Opt Lett ; 46(6): 1405-1408, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720198

RESUMEN

An optical true time delay line (OTTDL) is a fundamental building block for signal processing applications in microwave photonics and optical communications. Here, we experimentally demonstrate an index-variable OTTDL based on an array of 40 subwavelength grating (SWG) waveguides in silicon-on-insulator. Each SWG waveguide in the array is 34 mm long and arranged in a serpentine manner; the average incremental delay between waveguides is about 4.7 ps, and the total delay between the first and last waveguides is approximately 181.9 ps. The waveguide array occupies a chip area of ∼6.5mm×8.7mm=56.55mm2. The proposed OTTDLs bring potential advantages in terms of compactness as well as operation versatility to a variety of microwave signal processing applications.

12.
Opt Lett ; 46(6): 1450-1453, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720209

RESUMEN

We propose and demonstrate experimentally tilted subwavelength grating (SWG) waveguide Bragg gratings (WBGs). By tilting the SWG segments and optimizing the duty cycle, we can achieve polarization-dependent tuning of the spectral response of the SWG WBG, namely, the spectral response of the fundamental transverse electric (TE) mode shifts toward shorter wavelengths, while that for the transverse magnetic (TM) mode remains almost unchanged. In particular, for tilting angles of 5° and 30°, we can obtain a blueshift in the Bragg wavelength of 7 and 35 nm for the TE mode, while the Bragg wavelength for the TM mode remains within 0.5 nm. The proposed tilted SWG WBGs provide a novel method to manage polarization and/or obtain polarization-dependent wavelength selectivity with integrated WBG devices.

13.
Opt Express ; 27(10): 14381-14391, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163888

RESUMEN

We propose and experimentally demonstrate a reconfigurable microwave photonic filter based on temporal Talbot effects. The microwave signal is first uniformly sampled by a train of optical pulses through electro-optic intensity modulation. The sampled optical pulses are then directed to a Talbot-based optical signal processor, consisting of an electro-optic temporal phase modulator and a chromatic dispersion line. The Talbot-based microwave photonic filter (TMPF) exploits the inherent properties of the Talbot self-imaging effect for mitigating pulse-to-pulse intensity fluctuations of optical pulses to transmit some fluctuation frequencies and mitigate or entirely block other microwave spectral components. The output microwave signal is finally reconstructed from the processed optical pulses and the resultant RF response is measured by a network analyzer. The TMPF exhibits an RF response with periodic, symmetric-profile passbands whose center frequency and free spectral range (FSR) are defined by the sampling rate and the dispersion value. The filter passbands can be reconfigured electrically, in discrete steps, by adjusting the modulation function of the phase modulator, i.e., without the need for manual adjustment of the optical components. This enables the capability of selection of specific passbands among the primary passbands. The phase modulation function is provided using an arbitrary waveform generator, with the potential for fast tuning of the filter's spectral response. The bandwidth of the filter passband can also be easily customized by adjusting the sampling pulse's temporal width using an optical bandpass filter. Examples of filter performance in various passband configurations are also presented in the time domain to further validate the operation of the filter.

14.
Opt Express ; 27(5): 6377-6388, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876224

RESUMEN

A method for measuring picosecond pulse width by using only fiber components and optical power meters is presented. We have shown that the output power splitting ratio of a non-linear fiber loop mirror can be used to extract the full-width half maximum of the optical pulse, assuming a known slowly varying envelope shape and internal phase structure. Theoretical evaluation was carried out using both self-phase and cross-phase modulation approaches, with the latter showing a twofold sensitivity increase, as expected. In the experimental validation, pulses from an actively fiber mode-locked laser at the repetition rate of 10 GHz were incrementally temporally dispersed by using SMF-28 fiber, and then successfully measured over a pulse width range of 2-10 ps, with a resolution of 0.25 ps. This range can be easily extended from 0.25 to 40 ps by selecting different physical setup parameters.

15.
Appl Opt ; 57(28): 8338-8342, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461786

RESUMEN

In this paper, we demonstrate a microwave photonic (MWP) approach for interrogating multiple linearly chirped fiber Bragg grating (LCFBG) temperature sensors. The MWP interrogation system is based on an arrayed waveguide grating Sagnac interferometer, incorporating multiple LCFBG sensors, that is used to generate multiple chirped microwave waveforms whose characteristics are uniquely related to those of the LCFBGs. Compressing the generated microwave signals allows monitoring simultaneously and independently the shifts associated with applying temperature changes to each LCFBG in real time.

16.
Appl Opt ; 56(32): 9074-9078, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29131198

RESUMEN

Fiber optic sensors based on fiber Bragg gratings (FBGs) find potential use in condition monitoring because their spectral properties change according to external environmental and/or physical factors. We propose and demonstrate a technique for interrogating multiple FBG-based sensors based on microwave photonic (MWP) filtering. In particular, we exploit the spectrum-slicing properties of two different FBG Fabry-Perot cavities to implement a double passband MWP filter. Each sensor spectrum results in a unique MWP filter passband. As temperature is applied to a sensor, the corresponding MWP filter passband will shift in frequency; we track such shifts by monitoring the detected power at a fixed radio frequency. We discuss the use of a ratiometric approach for enhancing the sensitivity and the impact of cross-talk from the MWP filter responses in terms of simultaneous multi-sensor operation. Results show that we can monitor local temperatures at two (or multiple) different locations simultaneously and independently using a single measurement system.

17.
Opt Express ; 25(21): 25310-25317, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041199

RESUMEN

We tailor the spectral characteristics of silicon photonic contradirectional couplers (Contra-DCs), where the design of the coupler is based on placing a subwavelength grating (SWG) waveguide next to a strip waveguide. By tapering the gap distance between the SWG and strip waveguides, we demonstrate a compromise between sidelobe suppression and pass-band/stop-band extinction ratio such that the performance of the device as a potential optical (de)multiplexer is improved. The designs with different pass-band bandwidths of 12 nm, 9 nm, and 6 nm show 10 dB to 20 dB sidelobe suppression ratio and 15 dB to 35 dB extinction ratio. We also obtain a resonant transmission peak in the stop-band of the spectral response of the device by introducing a π phase shift into the gratings of the SWG waveguide. The resonant peak has 1 nm bandwidth and 7 dB extinction ratio, where the use of the SWG waveguide in the structure of such coupler allows the characteristics of the resonant peak to be highly sensitive to the cladding material, which is of strong desire in integrated sensing applications.

18.
Opt Express ; 25(11): 12100-12108, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786568

RESUMEN

Silicon nitride (SixNy) waveguides constitute a technology platform to realize optical signal processing based on the nonlinear Kerr effect. Varying the stoichiometry of the core (i.e., x and y in silicon nitride) provides an additional degree of freedom for engineering the waveguide properties, such as nonlinear Kerr parameter and dispersion. We demonstrate low-stress high-confinement silicon-rich nitride waveguides with flat and anomalous dispersion over the entire C and L optical wavelength transmission bands for optical signal processing based on cross-phase modulation. The waveguides do not show any nonlinear loss for a measured optical input intensity of up to 1.5 × 109 W/cm2. In particular, we achieve wavelength conversion of 10 Gb/s signals across the C band; XPM broadening is also observed in the O band. In addition, we highlight the use of SixNy waveguides for nonlinear microwave photonics. Specifically, we demonstrate radio-frequency spectral monitoring of optical signals with a bandwidth of hundreds of gigahertz.

19.
Opt Express ; 24(20): 23429-23438, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828406

RESUMEN

We propose and demonstrate a novel design of contradirectional couplers in which a subwavelength grating (SWG) waveguide replaces one of the asymmetric waveguides of the conventional designs. The fabricated devices in silicon-on-insulator (SOI) platform show over 35 dB suppression of undesired codirectional coupling and larger than 120 nm operating range free from the interference of intrawaveguide reflections thanks to the large optical phase-mismatch between the segmented SWG waveguide and its nearby continuous waveguide. We study the effects of tailoring the period of the SWG waveguide, the gap distance between the two waveguides, and the coupling length on the spectral characteristics of the device where changing the gap distance from 100 nm up to 500 nm allows for bandwidths from 18.2 nm down to 0.9 nm.

20.
Sci Rep ; 6: 36071, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27804993

RESUMEN

Dual-band fiber lasers are emerging as a promising technology to penetrate new industrial and medical applications from their dual-band properties, in addition to providing compactness and environmental robustness from the waveguide structure. Here, we demonstrate the use of a common graphene saturable absorber and a single gain medium (Tm3+:ZBLAN fiber) to implement (1) a dual-band fiber ring laser with synchronized Q-switched pulses at wavelengths of 1480 nm and 1840 nm, and (2) a dual-band fiber linear laser with synchronized mode-locked pulses at wavelengths of 1480 nm and 1845 nm. Q-switched operation at 1480 nm and 1840 nm is achieved with a synchronized repetition rate from 20 kHz to 40.5 kHz. For synchronous mode-locked operation, pulses with full-width at half maximum durations of 610 fs and 1.68 ps at wavelengths of 1480 nm and 1845 nm, respectively, are obtained at a repetition rate of 12.3 MHz. These dual-band pulsed sources with an ultra-broadband wavelength separation of ~360 nm will add new capabilities in applications including optical sensing, spectroscopy, and communications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...