Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; : e2312007, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708799

RESUMEN

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.

2.
Clin Cardiol ; 47(2): e24228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38402548

RESUMEN

Anemia and acute heart failure (AHF) frequently coexist. Several published studies have investigated the association of anemia with all-cause mortality and all-cause heart failure events in AHF patients, but their findings remain controversial. This study is intended to evaluate the relationship between anemia and AHF. We systematically searched PubMed, Medline, the Cochrane Library, Embase, and Elsevier's ScienceDirect databases until July 30, 2023, and selected prospective or retrospective cohort studies to evaluate anemia for AHF. A total of nine trials involving 29 587 AHF patients were eventually included. Pooled analyses demonstrated anemia is associated with a higher risk of all-cause heart failure event rate (OR: 1.82, 95% CI: 1.58-2.10, p < .01) and all-cause mortality, both for short-term (30 days) all-cause mortality (OR: 1.91, 95% CI: 1.31-2.79, p < .01) and long-term (1 year) all-cause mortality (OR: 1.72, 95% CI: 1.27-2.32, p < .01). The evidence from this meta-analysis suggested that anemia may be an independent risk factor for all-cause mortality and all-cause heart failure events in patients with AHF and might emphasize the importance of anemia correction before discharge.


Asunto(s)
Anemia , Insuficiencia Cardíaca , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Anemia/complicaciones , Anemia/diagnóstico , Anemia/epidemiología , Bases de Datos Factuales , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología
3.
Microbiol Spectr ; 12(1): e0302723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088542

RESUMEN

IMPORTANCE: The 2019 coronavirus disease (COVID-19) patients had a unique profile of gut bacteria. In this study, we characterized the intestinal bacteria in our COVID-19 cohorts and found that there was an increased incidence of severe cases in COVID-19 patients with decreased lymphocytes and increased neutrophils. Levels of lymphocytes and neutrophils and abundances of intestinal bacteria correlated with the severity of COVID-19.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , SARS-CoV-2 , Recuento de Linfocitos , Linfocitos
4.
J Ethnopharmacol ; 321: 117410, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989425

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is an aggressive inflammatory disease of the lungs characterized by a high mortality rate. More and more researchers have found that herbal medicines are highly effective in preventing and treating inflammatory lung diseases. Among them, Dachengqi Decoction (DCQD) is considered to be the representative prescription of "lung-intestine combined treatment" in traditional Chinese medicine, and its potential protective mechanism against ALI is worthy of further study. AIM OF THE STUDY: Based on the theory of "lung-intestine combined treatment", the protective effect and molecular mechanism of DCQD in alleviating ALI were verified by network pharmacology and experiments. MATERIALS AND METHODS: The active ingredients of DCQD were obtained by UPLC-MS. Network pharmacology and molecular docking techniques were used to screen the active ingredient-target pathway of DCQD for ALI treatment. Additionally, the ALI model was constructed and verified in vivo according to the predicted results. RESULTS: 34 active components and 570 potential targets of DCQD were selected by network pharmacological analysis. In addition, 950 target genes of ALI and 2095 target genes related to sepsis were obtained, and 570 interlinked target genes of the two were identified. We finally screened out 199 common target genes critical to DCQD treatment of ALI and sepsis, and then enriched them with GO and KEGG. In the ALI model, studies have found that DCQD alleviates the inflammatory response of ALI, possibly by inhibiting HIF-1α-mediated glycolysis. CONCLUSION: This study confirmed the preventive effect of DCQD on ALI, and found that DCQD can improve the protective mechanism of ALI by regulating the expression of HIF-1α, down-regulating glycolysis and reducing inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Sepsis , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Extractos Vegetales/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Sepsis/tratamiento farmacológico
5.
BMC Microbiol ; 23(1): 320, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924005

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a widespread heart condition caused by atherosclerosis and influences millions of people worldwide. Early detection of CAD is challenging due to the lack of specific biomarkers. The gut microbiota and host-microbiota interactions have been well documented to affect human health. However, investigation that reveals the role of gut microbes in CAD is still limited. This study aims to uncover the synergistic effects of host genes and gut microbes associated with CAD through integrative genomic analyses. RESULTS: Herein, we collected 52 fecal and 50 blood samples from CAD patients and matched controls, and performed amplicon and transcriptomic sequencing on these samples, respectively. By comparing CAD patients with health controls, we found that dysregulated gut microbes were significantly associated with CAD. By leveraging the Random Forest method, we found that combining 20 bacteria and 30 gene biomarkers could distinguish CAD patients from health controls with a high performance (AUC = 0.92). We observed that there existed prominent associations of gut microbes with several clinical indices relevant to heart functions. Integration analysis revealed that CAD-relevant gut microbe genus Fusicatenibacter was associated with expression of CAD-risk genes, such as GBP2, MLKL, and CPR65, which is in line with previous evidence (Tang et al., Nat Rev Cardiol 16:137-154, 2019; Kummen et al., J Am Coll Cardiol 71:1184-1186, 2018). In addition, the upregulation of immune-related pathways in CAD patients were identified to be primarily associated with higher abundance of genus Blautia, Eubacterium, Fusicatenibacter, and Monoglobus. CONCLUSIONS: Our results highlight that dysregulated gut microbes contribute risk to CAD by interacting with host genes. These identified microbes and interacted risk genes may have high potentials as biomarkers for CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/metabolismo , Transcriptoma , Bacterias/genética , Biomarcadores
6.
Medicina (Kaunas) ; 59(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37893458

RESUMEN

Background and Objectives: With the growing incidence and disability associated with myocardial infarction (MI), there is an increasing focus on cardiac rehabilitation post-MI. Kuanxiongzhuyu decoction (KXZY), a traditional Chinese herbal formula, has been used in the rehabilitation of patients after MI. However, the chemical composition, protective effects, and underlying mechanism of KXZY remain unclear. Materials and Methods: In this study, the compounds in KXZY were identified using a high-performance liquid chromatography-mass spectrometry (HPLC-MS) analytical method. Based on the compounds identified in the KXZY, we predictively selected the potential targets of MI and then constructed a protein-protein interaction (PPI) network to identify the key targets. Furthermore, the DAVID database was used for the GO and KEGG analyses, and molecular docking was used to verify the key targets. Finally, the cardioprotective effects and mechanism of KXZY were investigated in post-MI mice. Results: A total of 193 chemical compounds of KXZY were identified by HPLC-MS. In total, 228 potential targets were obtained by the prediction analysis. The functional enrichment studies and PPI network showed that the targets were largely associated with AKT-pathway-related apoptosis. The molecular docking verified that isoguanosine and adenosine exhibited excellent binding to the AKT. In vivo, KXZY significantly alleviated cardiac dysfunction and suppressed AKT phosphorylation. Furthermore, KXZY significantly increased the expression of the antiapoptotic proteins Bcl-2 and Bcl-xl and decreased the expression of the proapoptotic protein BAD. Conclusions: In conclusion, the network pharmacological and experimental evidence suggests that KXZY manifests anti-cardiac dysfunction behavior by alleviating cardiomyocyte apoptosis via the AKT pathway in MI and, thus, holds promising therapeutic potential.


Asunto(s)
Rehabilitación Cardiaca , Infarto del Miocardio , Humanos , Animales , Ratones , Farmacología en Red , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt , Infarto del Miocardio/complicaciones , Infarto del Miocardio/tratamiento farmacológico
7.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317156

RESUMEN

The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.

8.
Chem Commun (Camb) ; 59(47): 7283-7286, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37227447

RESUMEN

Laser-induced Fe3O4 nanoparticle-modified three-dimensional macroporous graphene is fabricated as a near-infrared light responsive nanozyme via a facile and in situ laser-scanning method under ambient conditions for the first time, showing an excellent catalytic-photothermal synergetic bactericidal ability under a low dose of H2O2 (0.1 mM) and short irradiation time (5.0 min).


Asunto(s)
Grafito , Nanopartículas , Grafito/farmacología , Peróxido de Hidrógeno , Rayos Infrarrojos
9.
Cell Biosci ; 13(1): 24, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739426

RESUMEN

BACKGROUND: Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS: Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS: Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS: Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.

10.
Cell Biol Toxicol ; 39(5): 2345-2364, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639301

RESUMEN

Alcohol-mediated reactive oxygen species (ROS) play a vital role in intestinal barrier injury. However, the mechanism of ROS accumulation in enterocytes needs to be explored further. In our study, we found that chronic-binge ethanol-fed mice had increased levels of gut oxidative stress and high intestinal permeability. The transcription profiles of the colonic epithelial cells showed that the level of NADPH oxidase 1 (NOX1) was significantly elevated in alcohol-exposed mice compared with isocaloric-exposed mice. In vitro, NOX1 silencing alleviated ROS accumulation and the apoptosis of human colonic epithelial cells (NCM460), while NOX1 overexpression accelerated oxidative stress injury of NCM460 cells. Propionic acid was reduced in the gut of chronic-binge ethanol-fed mice, compared with isocaloric-fed mice, as observed through untargeted metabolomic analysis. Supplementation with propionate relieved ethanol-induced liver and intestinal barrier injuries and reduced the level of ROS accumulation and apoptosis of ethanol-induced colonic epithelial cells. Propionate alleviating NOX1 induced ROS injury of colonic epithelial cells, independent of G protein-coupled receptors. Propionate significantly inhibited histone deacetylase 2 (HDAC2) expressions both in ethanol-exposed colonic epithelial cells and TNF-α-treated NCM460. Chromatin immunoprecipitation (ChIP) assays showed that propionate suppressed the NOX1 expression by regulating histone acetylation in the gene promoter region. In conclusion, NOX1 induces oxidative stress injury of colonic epithelial cells in alcohol-related liver disease. Propionate, which can act as an endogenous HDAC2 inhibitor, can decrease levels of apoptosis of intestinal epithelial cells caused by oxidative stress.


Asunto(s)
Etanol , NADPH Oxidasa 1 , Estrés Oxidativo , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Etanol/toxicidad , Etanol/metabolismo , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , Propionatos/farmacología , Especies Reactivas de Oxígeno/metabolismo
11.
J Clin Transl Hepatol ; 10(6): 1086-1098, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36381109

RESUMEN

Background and Aims: Hepatic sinusoidal obstruction syndrome (HSOS) is a life-threatening syndrome, and a cause is exposure to pyrrolizidine alkaloid (PA)-containing products. It is well-established that retrorsine (RTS), a representative Pas, insults hepatic sinusoidal endothelial cells and ensues congestion of hepatic sinusoids. However, little known about the impact of Pas on gut microbiota and intestinal barrier and inflammation in HSOS. Methods: Mice were gavaged with or without nonabsorbable antibiotics (ABX), followed by a single dose of RTS. The gut microbiota was examined by 16S rDNA sequencing. Results: ABX pretreatment significantly reversed RTS-induced liver damage. RTS altered gut microbiota composition, increasing Gram-negative bacteria and resulting in a sharp elevation of circulating lipopolysaccharides (LPS) in HSOS mice. Gut decontamination with ABX alleviated RTS-induced intestine inflammation, protected against disruption of the intestinal epithelial barrier and gut vascular barrier (GVB), and suppressed hepatic LPS-NF-κB pathway activation in RTS-induced HSOS. Importantly, the LPS level was positively correlated with MELD score in patients with HSOS. Elevated LPS in patients with HSOS confirmed that Gram-negative bacteria were involved in the pathogenesis of HSOS. Conclusions: RTS, a PA, cooperated with gut dysbiosis to cause intestinal inflammation and gut barrier compromise that increased transport of gut-derived LPS into the liver through the portal vein, which contributed to the pathology of HSOS. Modulating the gut microbiota, protecting the intestinal barrier, and suppressing intestinal inflammation with prebiotics or antibiotics might be a useful pharmacologic intervention in HSOS.

12.
J Cell Biochem ; 123(11): 1857-1872, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36037317

RESUMEN

Cholangiocyte death accompanied by the progression of primary biliary cholangitis (PBC) has not yet been thoroughly investigated. Thus, we are aimed to explore the role of HSP90 and a potential treatment strategy in cholangiocyte necroptosis. First, we detected the expression of HSP90 and necroptotic markers in liver tissues from patients and mice with PBC by immunohistochemistry (IHC) and real-time polymerase chain reaction (PCR). Then, the HSP90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), was administered by intraperitoneal injection to evaluate its therapeutic effect for PBC by IHC, real-time PCR, and western blotting. Human intrahepatic bile duct epithelial cells (HIBECs) were induced to necroptosis by toxic bile acid and lipopolysaccharide (LPS) treatment, and evaluated via Cell Counting Kit-8 and flow cytometry assays. Additionally, 17-DMAG, cycloheximide, and a proteasome inhibitor were used to evaluate the role of HSP90 in cholangiocyte necroptosis. We found that the expression of HSP90 was elevated in the cholangiocytes of patients and mice with PBC, along with higher expressions of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated-MLKL (p-MLKL). Proinflammatory cytokines and antibody levels of the E2 subunit of pyruvate dehydrogenase complex decreased after treatment with 17-DMAG in PBC mice. Meanwhile, RIPK1, RIPK3, phosphorylated-RIPK3, MLKL, and p-MLKL protein expressions decreased with 17-DMAG treatment. In vitro, 17-DMAG and necrostatin-1 prevented glycochenodeoxycholic acid and LPS-induced necroptosis of HIBECs. Immunoprecipitation and high-performance liquid chromatography-mass spectrometry analysis showed that RIPK1 combined with HSP90. Additionally, the 17-DMAG treatment reduced the RIPK1 half-life. Overall, 17-DMAG might be a potential therapeutic agent for PBC via cholangiocyte necroptosis prevention by accelerating RIPK1 degradation.


Asunto(s)
Cirrosis Hepática Biliar , Necroptosis , Humanos , Animales , Ratones , Lipopolisacáridos/toxicidad , Proteínas Quinasas/metabolismo , Proteínas HSP90 de Choque Térmico , Células Epiteliales/metabolismo
13.
Rev Cardiovasc Med ; 23(2): 60, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35229551

RESUMEN

Heart failure (HF) is the end stage of several cardiovascular diseases with high mortality worldwide; however, current chemical drugs have not beneficial effect on reducing its mortality rate. Due to its properties of multiple targets components with multiple targets, natural products derived from traditional Chinese medicine (TCM) have exerts unique effects on the amelioration of the clinical symptoms of HF, yet, TCM is not widely used in the clinic since the potential therapeutic targets have not been fully investigated. Therefore, in this review, we briefly summarized the pathophysiological mechanism of HF and reviewed the published clinical evaluations of TCM and natural products from Chinese herbs to treat HF. Then, the therapeutic potential and the underlying mechanisms by which the natural products from Chinese herb exert their protective effects were further summarized. We concluded from this review that natural products from Chinese herbs have been shown to be more effective in treating HF by targeting multiple signaling pathways, including anticardiac hypertrophy, antifibrotic, anti-inflammatory, antioxidative and antiapoptotic activities. However, the major limitations of these compounds is that there are a lack of large scale, multicenter, randomized and controlled clinical trials for their use in treatment of HF, and the toxic effects of natural products from Chinese herbs also needed further investigation. Despite these limitations, further clinical trials and experimental studies will provide a better understanding of the mechanism of natural products from Chinese herbs and promote their wide use to treat HF.


Asunto(s)
Productos Biológicos , Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Productos Biológicos/efectos adversos , Medicamentos Herbarios Chinos/efectos adversos , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Medicina Tradicional China
14.
Eur J Pharmacol ; 921: 174866, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35231468

RESUMEN

The proliferation of hepatic progenitor cells (HPCs) contributes to liver regeneration and fibrogenesis during chronic liver injury; however, the mechanism modulating HPC proliferation remains unknown. Y-box binding protein-1 (YB-1) is a transcription factor that regulates the transcription of several genes and is highly expressed in liver injury. We explored the role of YB-1 in HPC proliferation and liver fibrosis. We detected increased expansion of HPCs and elevated levels of YB-1 in HPCs from patients with hepatitis B virus-related fibrosis and choline-deficient ethionine-supplemented or 5-diethoxycarbonyl-1,4-dihydrocollidine diet-induced mice compared with those in control groups. HPC-specific deletion of YB-1 using YB-1flox/flox; Foxl1-Cre+/- mice led to reduced HPC expansion and less collagen deposition in the liver tissues compared with that in Cre-/- mice. In cultured primary HPCs, YB-1 knockdown inhibited HPC proliferation. Further experiments indicated YB-1 negatively regulated p53 expression, and silencing of p53 blocked YB-1 knockdown-mediated inhibition of HPC proliferation. Collectively, YB-1 negatively regulates HPC proliferation and alleviates liver fibrosis by p53.


Asunto(s)
Cirrosis Hepática , Células Madre , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Proliferación Celular/genética , Etionina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/patología , Regeneración Hepática/genética , Ratones , Células Madre/metabolismo
15.
Front Med (Lausanne) ; 9: 840752, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308525

RESUMEN

Cirrhosis and liver cancer caused by alcohol-associated liver disease (ALD) are serious threats to people's health. In addition to hepatic cell apoptosis and liver inflammation caused by oxidative stress during alcohol metabolism, intestinal microbiota disorders are also involved in the onset and development of ALD. Ethanol and its' oxidative and non-oxidative metabolites, together with dysbiosis-caused-inflammation, destroys the intestinal barrier. Changes of several microbial metabolites, such as bile acids, short-chain fatty acids, and amino acid, are closely associated with gut dysbiosis in ALD. The alcohol-caused dysbiosis can further influence intestinal barrier-related proteins, such as mucin2, bile acid-related receptors, and aryl hydrocarbon receptor (AhR), and these abnormal changes also participate in the injury of the intestinal barrier and hepatic steatosis. Gut-derived bacteria, fungi, and their toxins, such as lipopolysaccharide (LPS) and ß-glucan translocate into the liver through the damaged intestinal barrier and promote the progression of inflammation and fibrosis of ALD. Thus, the prevention of alcohol-induced disruption of intestinal permeability has a beneficial effect on ALD. Currently, multiple therapeutic treatments have been applied to restore the gut microbiota of patients with ALD. Fecal microbial transplantation, probiotics, antibiotics, and many other elements has already shown their ability of restoring the gut microbiota. Targeted approaches, such as using bacteriophages to remove cytolytic Enterococcus faecalis, and supplement with Lactobacillus, Bifidobacterium, or boulardii are also powerful therapeutic options for ALD.

16.
J Physiol Biochem ; 78(1): 125-137, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34651286

RESUMEN

Hepatic ischemia reperfusion injury (IRI) occurs in liver transplantation, complex liver resection, and hemorrhagic shock, which causes donor organ shortage and hepatic damage. The burst of reactive oxygen species (ROS) during reperfusion leads to cell apoptosis and necroptosis. It has been reported that estrogen could attenuate hepatic IRI. G protein estrogen receptor (GPER) mediates estrogen effects via nonclassic receptor systems. Here, we investigate whether estrogen protecting liver from hepatic IRI depends on GPER and the influence of GPER activation on hepatocyte necroptosis. We proved that estrogen had a protective effect on both hepatocyte hypoxia re-oxygen (H/R) challenge and mouse hepatic ischemia reperfusion model. However, the application of GPER specific antagonist G15 before estrogen inhibited this beneficial effect. The results of mitochondria functional measurement revealed that estrogen improved hepatocyte mitochondria function by activating GPER, which might benefit from the increased expression of connexin 43 (Cx43) in mitochondria. To investigate the relationship between GPER activation and necroptosis, we used caspase-3/7 inhibitor benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-chloromethylketone (Z-DEVD-FMK) to eliminate the interference of apoptosis. Estrogen showed a protective effect on hepatic IRI after using Z-DEVD-FMK, which could be suppressed by G15. GPER activation decreased the level of receptor interacting protein kinase (RIPK) 3, phosphorylated (p-) RIPK1, and p-mixed lineage kinase domain-like (MLKL). The co-immunoprecipitation result indicated that GPER could bind with RIPK3. GPER is indispensable in estrogen protecting liver from IRI. GPER activation attenuates hepatocyte necroptosis by decreasing the level of RIPK3, p-RIPK1, and p-MLKL.


Asunto(s)
Necroptosis , Daño por Reperfusión , Animales , Estrógenos , Proteínas de Unión al GTP/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Receptores de Estrógenos/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control
17.
Front Cardiovasc Med ; 8: 740515, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901206

RESUMEN

Doxorubicin is a broad-spectrum chemotherapy drug applied in antitumor therapy. However, its clinical utility is limited by its fatal cardiotoxicity. Doxorubicin (DOX)-induced cardiomyopathy (DIC) begins with the first DOX dose and is characterized by being cumulative dose-dependent, and its early diagnosis using common detection methods is very difficult. Therefore, it is urgent to determine the underlying mechanism of DIC to construct treatment strategies for the early intervention before irreversible damage to the myocardium occurs. Growing evidence suggests that microRNAs (miRNAs) play regulatory roles in the cardiovascular system. miRNAs may be involved in DIC by acting through multiple pathways to induce cardiomyocyte injury. Recent studies have shown that the dysregulation of miRNA expression can aggravate the pathological process of DIC, including the induction of oxidative stress, apoptosis, ion channel dysfunction and microvascular dysfunction. Current findings on the roles of miRNAs in DIC have led to a wide range of studies exploring candidate miRNAs to be utilized as diagnostic biomarkers and potential therapeutic targets for DIC. In this review, we discuss frontier studies on the roles of miRNAs in DIC to better understand their functions, develop relevant applications in DIC, discuss possible reasons for the limitations of their use and speculate on innovative treatment strategies.

19.
Mol Med Rep ; 24(5)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34498711

RESUMEN

The irreversible loss of cardiomyocytes is mainly the result of ischemic/reperfusion (I/R) myocardial injury, leading to persistent heart dysfunction and heart failure. It has been reported that Lycium barbarum polysaccharide (LBP) has protective effects on cardiomyocytes, but the specific mechanism is still not completely understood. The present study examined the protective role of LBP in myocardial I/R injury. Rats were subjected to myocardial I/R injury and LBP treatment. Moreover, rat myocardial H9C2 cells exposed to hypoxia/reoxygenation (H/R) were used to simulate cardiac injury during myocardial I/R process and were exposed to LBP, rapamycin (an autophagy activator) or nuclear factor­erythroid factor 2­related factor 2 (Nrf2) transfection. Morphological examination, histopathological examination and echocardiography were used to determine the cardiac injury after I/R injury. Cell viability and apoptosis were determined via MTT and flow cytometry assays, respectively. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin T (cTnT), IL­1ß, IL­6, TNF­α, malondialdehyde (MDA) and superoxidase dismutase (SOD) in rat serum, hearts and/or cells were assessed using ELISAs. The expression levels of Beclin 1, LC3II/LC3I, P62 and Nrf2 were analyzed via reverse transcription­quantitative PCR and western blotting. The results demonstrated that LBP improved heart function and repaired cardiomyocyte damage in I/R model rats, as well as reduced the production of cTnT, CK, LDH, IL­1ß, IL­6 and TNF­α. The in vitro study results indicated that LBP increased cell viability, the apoptosis rate, and the levels of SOD and P62, as well as reduced the levels of LDH, CK, IL­1ß, IL­6, TNF­α, MDA, Beclin 1 and LC3­II/LC3­I in H/R­injured H9C2 cells. Moreover, LBP promoted Nrf2 nuclear translocation, but decreased Nrf2 expression in the cytoplasm. Rapamycin exacerbated the aforementioned effects in H/R injured H9C2 cells, and partially reversed LBP­induced effects. Overexpressing Nrf2 counteracted I/R­induced effects and partially resisted rapamycin­induced effects. These findings demonstrated that LBP exhibited a cardiac protective effect on the ischemic myocardium of rats after reperfusion and attenuated myocardial I/R injury via autophagy inhibition­induced Nrf2 activation.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
20.
FASEB J ; 35(5): e21571, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33861889

RESUMEN

Liver fibrosis is a common feature of liver dysfunction during chronic liver diseases and is frequently associated with angiogenesis, a dynamic process that forms new blood vessels from preexisting vasculature. MicroRNAs (miRNAs), which act as posttranscriptional regulators of gene expression, have been shown to regulate liver fibrosis; however, how miRNAs regulate angiogenesis and its mechanism in fibrosis are not well understood. We aimed to elucidate the role and mechanism of miR-30c in attenuating liver fibrosis. Using miRNA profiling of fibrotic murine livers, we identified differentially regulated miRNAs and discovered that miR-30c is aberrantly expressed and targets endothelial delta-like ligand 4 (DLL4) in either carbon tetrachloride-treated or bile duct ligated fibrotic mice, as well as in patients with liver fibrosis. Using CCK-8, wound healing and Matrigel tube formation assays, we found that miR-30c inhibited liver sinusoidal endothelial cell (LSEC) proliferation, migration, and angiogenesis capacity by targeting DLL4 in vitro. Importantly, nanoparticle-based delivery of miR-30c to LSECs inhibited the DLL4/Notch pathway and angiogenesis, thereby ameliorating liver fibrosis in vivo. Collectively, our findings demonstrate a protective role of miR-30c in liver fibrosis by regulating DLL4/Notch signaling and angiogenesis. Thus, miR-30c may serve as a potential treatment for chronic liver diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas de Unión al Calcio/antagonistas & inhibidores , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Cirrosis Hepática/prevención & control , Hígado/metabolismo , MicroARNs/genética , Neovascularización Patológica/prevención & control , Adulto , Animales , Tetracloruro de Carbono/toxicidad , Femenino , Humanos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neovascularización Patológica/etiología , Neovascularización Patológica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA