Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 133045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38942666

RESUMEN

This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.


Asunto(s)
Microbioma Gastrointestinal , Liposomas , Prebióticos , Microbioma Gastrointestinal/efectos de los fármacos , Liposomas/química , Polimerizacion , Cumarinas/química , Cumarinas/metabolismo , Fermentación
2.
Front Plant Sci ; 15: 1402218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845847

RESUMEN

Hessian fly (HF), Mayetiola destructor, is a major insect pest that causes severe losses in grain yield and quality of wheat (Triticum aestivum). Growing resistant cultivars is the most cost-effective approach to minimize wheat yield losses caused by HF. In this study, 2,496 wheat accessions were screened for resistance to the HF biotype 'Great Plains' (GP) in the greenhouse experiments. To purify seeds from heterogeneous resistant accessions, we recovered single resistant plants from 331 accessions that had at least one resistant plant after HF infestation of a global collection of 1,595 accessions and confirmed 27 accessions with high resistance (HR), and 91 accessions with moderate resistance (MR) to the GP biotype using purified seeds. Screening of 203 U.S. winter wheat accessions in three experiments identified 63 HR and 28 MR accessions; and screening of three additional Asian panels identified 4 HR and 25 MR accessions. Together, this study identified 96 HR accessions and 144 MR accessions. Analysis of the geographic distribution of these HR and MR accessions revealed that these countries with HF as a major wheat pest usually showed higher frequencies of resistant accessions, with the highest frequency of HR (81.3%) and MR (30.6%) accessions identified from the U.S. In addition, phenotyping of 39 wheat accessions that carry known HF resistance genes showed that all the accessions except H1H2 remain effective against GP biotype. Some of these newly identified resistant accessions may contain new HF resistance genes and can be valuable sources for developing HF resistant wheat cultivars.

3.
Insects ; 15(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786856

RESUMEN

The Sitophilus zeamais (maize weevil) and Sitophilus oryzae (rice weevil) are two insect pests that have caused huge economic losses to stored grains worldwide. It is urgent to develop an environmentally friendly strategy for the control of these destructive pests. Here, the olfactory-mediated selection preference of the two weevil species to three stored grains was analyzed, which should help establish a pull-push system in managing them. Bioassays showed that maize weevil adults prefer to select maize, followed by paddy and wheat, while rice weevil adults mainly migrate towards wheat. Volatile analyses revealed that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene are the major components in volatiles from both maize and wheat, but the abundance of these chemicals is much lower in maize than that in wheat. The volatile limonene was only detected in paddy. Y-tube bioassays suggest that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene were all attractive to both weevils, whereas limonene was attractive only to rice weevils. Overall, maize weevil appeared more sensitive to the tested volatiles based on having much lower effective concentrations of these volatiles needed to attract them. The differences in volatile profiles among the grains and the sensitivity of the two species towards these volatiles may explain the behavioral differences between maize and rice weevils in selecting host grains. The differences in sensitivity of maize and rice weevils towards host volatile components with abundance differences are likely determinants driving the two insect species to migrate towards different host grains.

4.
Cells ; 13(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247835

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) have shown great potential for human health, but their growth and properties have been significantly limited by the traditional monolayer (2D) cell culture method for more than 15 years. Three-dimensional (3D) culture technology has demonstrated tremendous advantages over 2D. In particular, the 3D PGmatrix hiPSC derived from a peptide hydrogel offers a breakthrough pathway for the maintenance and expansion of physiologically relevant hiPSC 3D colonies (spheroids). In this study, the impact of 3D culture conditions in PGmatrix hiPSC on cell performance, integrity, and secretome profiles was determined across two commonly used hiPSC cell lines derived from fibroblast cells (hiPSC-F) and peripheral blood mononuclear cells (hiPSC-P) in the two most popular hiPSC culture media (mTeSR1 and essential eight (E8)). The 3D culture conditions varied in hydrogel strength, 3D embedded matrix, and 3D suspension matrix. The results showed that hiPSCs cultured in 3D PGmatrix hiPSC demonstrated the ability to maintain a consistently high cell viability that was above 95% across all the 3D conditions with cell expansion rates of 10-20-fold, depending on the 3D conditions and cell lines. The RT-qPCR analysis suggested that pluripotent gene markers are stable and not significantly affected by the cell lines or 3D PGmatrix conditions tested in this study. Mass spectrometry-based analysis of secretome from hiPSCs cultured in 3D PGmatrix hiPSC revealed a significantly higher quantity of unique proteins, including extracellular vesicle (EV)-related proteins and growth factors, compared to those in the 2D culture. Moreover, this is the first evidence to identify that hiPSCs in a medium with a rich supplement (i.e., mTeSR1) released more growth-regulating factors, while in a medium with fewer supplements (i.e., E8) hiPSCs secreted more survival growth factors and extracellular proteins. These findings offer insights into how these differences may impact hiPSC behavior, and they deepen our understanding of how hiPSCs respond to 3D culture conditions, aiding the optimization of hiPSC properties in translational biomedical research toward clinical applications.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Hidrogeles/farmacología , Leucocitos Mononucleares , Secretoma , Péptidos/farmacología
5.
Int J Biol Macromol ; 253(Pt 7): 127554, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865359

RESUMEN

Urolithin A (UroA) is gut metabolites of ellagitannins possessing a vast range of biological activities, but its poor water solubility and low bioavailability hinder its potential applications. This study utilized the pH dependent dissolution characteristics of UroA and employed a simple pH-driven method to load UroA into liposomes. The characterization and stability of obtained liposomes under different conditions were evaluated, and their oral bioavailability was tested by pharmacokinetics, and compared with UroA liposomes prepared using traditional thin film dispersion (TFM-ULs). Results indicated that liposomes could effectively encapsulate UroA. The UroA liposomes prepared by the pH-driven method (PDM-ULs) showed lower particle size, polydispersity index, zeta potential, and higher encapsulation efficiency than TFM-ULs. Interestingly, better thermal stability, storage stability, in vitro digestion stability, and higher bioaccessibility were also found on PDM-ULs. Moreover, pharmacokinetic experiments in rats demonstrated that PDM-ULs could significantly improve the bioavailability of UroA, with an absorption efficiency 1.91 times that of TFM-ULs. Therefore, our findings suggest that liposomes prepared by pH-driven methods have great potential in improving the stability and bioavailability of UroA.


Asunto(s)
Cumarinas , Liposomas , Ratas , Animales , Disponibilidad Biológica , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
6.
Foods ; 12(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37509805

RESUMEN

Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 µm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.

7.
Insects ; 14(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367305

RESUMEN

Abscisic acid (ABA) is an isoprenoid-derived plant signaling molecule involved in a wide variety of plant processes, including facets of growth and development as well as responses to abiotic and biotic stress. ABA had previously been reported in a wide variety of animals, including insects and humans. We used high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-(ESI)-MS/MS) to examine concentrations of ABA in 17 species of phytophagous insects, including gall- and non-gall-inducing species from all insect orders with species known to induce plant galls: Thysanoptera, Hemiptera, Lepidoptera, Coleoptera, Diptera, and Hymenoptera. We found ABA in insect species in all six orders, in both gall-inducing and non-gall-inducing species, with no tendency for gall-inducing insects to have higher concentrations. The concentrations of ABA in insects often markedly exceeded those typically found in plants, suggesting it is highly improbable that insects obtain all their ABA from their host plant via consumption and sequestration. As a follow-up, we used immunohistochemistry to determine that ABA localizes to the salivary glands in the larvae of the gall-inducing Eurosta solidaginis (Diptera: Tephritidae). The high concentrations of ABA, combined with its localization to salivary glands, suggest that insects are synthesizing and secreting ABA to manipulate their host plants. The pervasiveness of ABA among both gall- and non-gall-inducing insects and our current knowledge of the role of ABA in plant processes suggest that insects are using ABA to manipulate source-sink mechanisms of nutrient allocation or to suppress host-plant defenses. ABA joins the triumvirate of phytohormones, along with cytokinins (CKs) and indole-3-acetic acid (IAA), that are abundant, widespread, and localized to glandular organs in insects and used to manipulate host plants.

8.
Crit Rev Food Sci Nutr ; 63(32): 11385-11398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35730204

RESUMEN

Carotenoids, polyphenols, and minerals (CPMs) are representative bioactive compounds and micronutrients in plant-based foods, showing many potentially positive bioactivities. Bioaccessibility is a prerequisite for bioactivities of CPMs. Cell wall polysaccharides (CWPs) are major structural components of plant cell wall, and they have been proven to affect the bioaccessibility of CPMs in different ways. This review summarizes recent literatures about the effects of CWPs on the bioaccessibility of CPMs and discusses the potential mechanisms. Based on the current findings, CWPs can inhibit the bioaccessibility of CPMs in gastrointestinal tract. The effects of CWPs on the bioaccessibility of polyphenols and minerals mainly attributes to bind between them, while CWPs affect the bioaccessibility of carotenoids by changing the digestive environment. Further, this review overviews the factors (environmental conditions, CWPs properties and CPMs characteristics) affecting the interactions between CWPs and CWPs. This review may help to better design healthy and nutritious foods precisely.


Asunto(s)
Carotenoides , Polifenoles , Carotenoides/análisis , Polifenoles/análisis , Minerales/metabolismo , Polisacáridos/análisis , Pared Celular/química
9.
Crit Rev Food Sci Nutr ; 63(31): 10637-10658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35687361

RESUMEN

Flavonoids are important active ingredients in plant-based food, which have many beneficial effects on health. But the low solubility, poor oral bioavailability, and inferior stability of many flavonoids may limit their applications in the food, cosmetics, and pharmaceutical industries. Structural modification can overcome these shortcomings to improve and extend the application of flavonoids. The study of how to modify flavonoids and the influence of various modifications on biological activity have drawn great interest in the current literature. In this review, the working principles and operating conditions of modification methods were summarized along with their potential and limitations in terms of operational safety, cost, and productivity. The influence of various modifications on biological activities and the structure-activity relationships of flavonoids derivatives were discussed and highlighted, which may give guidance for the synthesis of highly effective active agents. In addition, the safety of flavonoids derivatives is reviewed, and future research directions of flavonoid modification research are discussed.


Asunto(s)
Flavonoides , Alimentos , Flavonoides/farmacología , Flavonoides/química , Relación Estructura-Actividad , Disponibilidad Biológica , Solubilidad
10.
Plant Foods Hum Nutr ; 78(1): 76-85, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36327062

RESUMEN

Jackfruit is one of the major tropical fruits, but information on the phytochemicals and biological benefits of its pulp is limited. In this study, the phytochemicals and biological activities including antioxidant, antitumor and anti-inflammatory activities of five jackfruit pulp cultivars (M1, M2, M3, M7 and T5) were comparatively investigated. A total of 11 compounds were identified in all cultivars of jackfruit pulp, among which 4-hydroxybenzoic acid, caffeic acid, ferulic acid and tryptophan N-glucoside were reported for the first time in jackfruit. T5 exhibited the highest total phenolic content (7.69 ± 0.73 mg GAE/g DW), antioxidant capacity (109.8, 96.7 and 207 mg VCE/g DW for DPPH, ABTS and FRAP, respectively), antitumor activity (80.31%) and anti-inflammatory activity (78.44%) among five cultivars. These results can provide a reference for growers to choose jackfruit cultivar and offer an insight into the industrial application of jackfruit pulp derived-products.


Asunto(s)
Artocarpus , Artocarpus/química , Antioxidantes/química , Extractos Vegetales/química , Fitoquímicos/química , Fenoles
11.
Carbohydr Polym ; 291: 119582, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698399

RESUMEN

The quality parameters of mangoes change during ripening, which has a vital impact on processing characteristics. Effects of ripening stage (four stages from the lowest to highest degree-RS-1, RS-2, RS-3, RS-4) on cell wall polysaccharides and far infrared drying kinetics of mangoes were investigated. As ripening progressed, the water-soluble pectin contents increased by 213.5%; while the chelate-, sodium carbonate-soluble pectin and hemicellulose contents decreased by 44.0%, 59.5% and 65.8%, respectively. Moreover, the molecular weight reduction confirmed the degradation of pectin. These further caused the alteration of cell wall structure and changes in water distribution. Meanwhile, the drying time of mangos with different ripeness were in the order: RS-3 > RS-4 > RS-2 > RS-1. It correlated with the degradation of cell wall polysaccharides, the destruction of cell wall and the increases in free water during ripening. The ripeness classification could effectively improve the uniformity and efficiency of fruits drying processing.


Asunto(s)
Mangifera , Pectinas , Pared Celular/química , Celulosa/metabolismo , Frutas/química , Cinética , Pectinas/química , Polisacáridos/metabolismo , Agua/análisis
12.
Foods ; 11(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563975

RESUMEN

This study evaluated thirteen different black mulberry fruits (Morus nigra L.) grown in the Guangdong region in order to select the best cultivar for health benefits and commercial applications. The phenolic compounds were identified and quantified using UPLC-ESI-MS/MS. The antioxidant activity was evaluated by three in vitro methods. Significant differences among samples were found regarding total soluble solids (6.20-15.83 °Brix), titratable acidity (5.82-48.49 mg CA/g), total phenolic contents (10.82-27.29 mg GAE/g), total flavonoid contents (1.21-2.86 mg RE/g) and total anthocyanin contents (2.91-11.86 mg CE/g). Fifty-five different phenolic compounds were identified, of which fifteen were reported in mulberry for the first time, but only forty-six of them were quantitated. The DPPH radical scavenging activity, ABTS radical scavenging activity and ferric ion-reducing antioxidant power varied significantly among the samples. Overall, cultivars with better combinations of phenolic compounds and antioxidant activity were Qiong46 (M-2), Yuebanguo (M-4) and Heizhenzhu (M-10), which were recommended for commercial cultivation.

13.
Ecol Evol ; 12(4): e8815, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35475184

RESUMEN

The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free-living aphids. Here, we generated a high-quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine-seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single-copy orthologous genes. A total of 14,089 protein-coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high-quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.

14.
J Food Sci ; 87(4): 1696-1707, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35289405

RESUMEN

Pachira macrocarpa is a woody oil crop with high economic and ornamental value. Although P. macrocarpa seeds are rich in oil, little information has been reported about its characterization. In this study, the fatty acids, minor components (tocopherols, squalene, phytosterols, and total phenols), antioxidant activity, cytotoxicity, thermal, and rheological behavior of the P. macrocarpa seed oil (PSO) were investigated for the first time. The results showed that the seeds contained 43.34% lipid, which was mainly composed of palmitic acid (49.96%), linoleic acid (31.22%), and oleic acid (13.48%). The contents of tocopherols, squalene, phytosterols, and total phenols in PSO were 42.01 mg/100 g, 96.78 mg/100 g, 119.67 mg/100 g, and 3.79 mg GAE/100 g, respectively. PSO showed relatively strong DPPH radical scavenging capacity (93.47 µmol TE/100 g) and high melting point (20.8°C). In addition, the oil exhibited Newtonian flow behavior and was not toxic to normal L929 cells at concentrations of 500-8000 µg/ml. As a whole, PSO may be considered as a valuable source for new multipurpose products for industrial utilization. PRACTICAL APPLICATION: Pachira macrocarpa is a woody oil crop and its seeds are rich in oil. Our study has investigated the physicochemical properties and chemical composition of the P. macrocarpa seed oil (PSO). The present study revealed PSO had potential as an edible oil, and it may be considered as a valuable source for new multipurpose products for food industrial utilization.


Asunto(s)
Bombacaceae , Fitosteroles , Ácidos Grasos/análisis , Fenoles/análisis , Fitosteroles/análisis , Aceites de Plantas/química , Semillas/química , Escualeno/análisis , Tocoferoles/análisis
15.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35204172

RESUMEN

Combination drug therapy has become an effective strategy to control inflammation. Lipophilic grape seed proanthocyanidin (LGSP) and camellia oil (CO) have been independently investigated to show anti-inflammatory effects, but their synergistic anti-inflammatory effects are unknown. The aim of this study was to investigate the synergistic anti-inflammatory effects of LGSP and CO. The anti-inflammatory activity of LGSP and CO individual or in combination on RAW264.7 cells was detected by MTT assay, Griess reagent, RT-PCR, 2',7'-dichlorfluoroescein diacetate and Western blot analysis. The combined treatment of LGSP with CO (20 µg/mL and 1 mg/mL) synergistically suppressed the production of NO, TNF-α, IL-6 and ROS. Further studies showed that the synergistic effect was attributed to their suppression of the activation of NF-κB and MAPK signaling pathways. Overall, our findings demonstrate the potential synergistic effect between LGSP and CO in LPS-induced inflammation.

16.
Antioxidants (Basel) ; 11(2)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35204304

RESUMEN

Lipophilic grape seed proanthocyanidin (LGSP) synthesized from GSP and lauric acid exhibits an excellent antioxidant and anti-inflammatory effect. However, its anti-cervical cancer activity is still unknown. In this study, the in vitro anti-cervical cancer activity of LGSP on HeLa cell lines was investigated by MTT assay, flow cytometry and Western blot analysis, and its effect was explored by a HeLa-derived xenograft zebrafish model. LGSP exhibited an excellent anti-proliferative effect on HeLa cells by increasing the level of reactive oxygen species, which further induced cell apoptosis and blocked cell cycle progression in the G2/M phase. LGSP-treated HeLa cells showed a reduction in mitochondrial membrane potential, upregulation of the Bax/Bcl-2 ratio, release of cytochrome c into the cytoplasm, and activation of cleaved caspase-9/3 and cleavage of PARP, thus indicating that LGSP induced apoptosis through the intrinsic mitochondrial/caspase-mediated pathway. In the zebrafish model, LGSP effectively suppressed the growth of a HeLa xenograft tumor. These data suggest that LGSP may be a good candidate for the prevention or treatment of cervical cancer.

17.
Foods ; 11(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35159568

RESUMEN

In the food industry, the most prominent and concerned points in the application of dietary fiber are hydration properties and oil absorption capacity. The target of this work was to investigate the impact of a novel industry-scale microfluidizer system (ISMS) on the changing structures and functionalities of pea fiber. Different ISMS treatment intensity (0-120 MPa for one pass and 120 MPa for two passes) was applied to treat pea fiber. ISMS treatment induced the reduction in particle size and the transformation of big compact blocks to loose flakes, and the destruction of the original ordered cellulose structure caused the decline of crystallinity. Meanwhile, the hydration properties of pea fiber were improved, and pre-pulverizer and industry-scale microfluidizer treatment together increased the swelling capacity and water retention capacity of fiber. The oil holding capacity of ISMS-treated fiber was increased to more than double the original one. The elevated functionalities of pea fiber by ISMS treatment could be attributed to loosening structure, exposing more surface area, and disordering the crystalline structure, which increased the sites of water binding and oil adsorption. These findings suggested that ISMS could be applied as an effective industrial technique to the disintegrate structure and improve the functionalities of pea fiber, so as to widen the application of pea fibers in foods.

18.
Mol Breed ; 42(4): 18, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309459

RESUMEN

Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat breeding lines was used for GWAS and a training population to develop prediction models for grain yield selection. An imbalanced set of yield data collected from 102 environments (year-by-location) over 10 years, through testing yield in 40-66 lines each year at 6-14 locations with 38-41 lines repeated in the test in any two consecutive years, was used. Based on correlations among data from different environments within two adjacent years and heritability estimated in each environment, yield data from 87 environments were selected and assigned to two correlation-based groups. The yield best linear unbiased estimation (BLUE) from each group, along with reaction to greenbug and Hessian fly in each line, was used for GWAS to reveal genomic regions associated with yield and insect resistance. A total of 74 genomic regions were associated with grain yield and two of them were commonly detected in both correlation-based groups. Greenbug resistance in TXE lines was mainly controlled by Gb3 on chromosome 7DL in addition to two novel regions on 3DL and 6DS, and Hessian fly resistance was conferred by the region on 1AS. Genomic prediction models developed in two correlation-based groups were validated using a set of 105 new advanced breeding lines and the model from correlation-based group G2 was more reliable for prediction. This research not only identified genomic regions associated with yield and insect resistance but also established the method of using historical imbalanced breeding data to develop a genomic prediction model for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01287-8.

19.
Theor Appl Genet ; 134(12): 3951-3962, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34471944

RESUMEN

KEY MESSAGE: A major QTL for Hessian fly resistance was precisely mapped to a 2.32 Mb region on chromosome 3B of the US hard winter wheat cultivar 'Overland'. The Hessian fly (HF, Mayetiola destructor) is a destructive insect pest of wheat in the USA and worldwide. Deploying HF-resistant cultivars is the most effective and economical approach to control this insect pest. A population of 186 recombinant inbred lines (RILs) was developed from 'Overland' × 'Overley' and phenotyped for responses to HF attack using the HF biotype 'Great Plains'. A high-density genetic linkage map was constructed using 1,576 single nucleotide polymorphism (SNP) markers generated by genotyping-by-sequencing (GBS). Two quantitative trait loci (QTLs) with a significant epistatic effect on HF resistance were mapped to chromosomes 3B (QHf.hwwg-3B) and 7A (QHf.hwwg-7A) in Overland, which are located in similar chromosome regions as found for H35 and H36 in the cultivar 'SD06165', respectively. QHf.hwwg-3B showed a much larger effect on HF resistance than QHf.hwwg-7A. Five and four GBS-SNPs, respectively, in the QHf.hwwg-3B and QHf.hwwg-7A QTL intervals were converted into Kompetitive allele specific polymerase chain reaction (KASP) markers. QHf.hwwg-3B was precisely mapped to a 2.32 Mb interval (2,479,314-4,799,538 bp) using near-isogenic lines (NILs) and RILs that have recombination within the QTL interval. The US winter wheat accessions carrying contrasting alleles at KASP markers KASP-3B4525164, KASP-7A47772047 and KASP-7A65090410 showed significant difference in HF resistance. The combination of the two KASP markers KASP-3B3797431 and KASP-3B4525164 is near-diagnostic for the detection of QHf.hwwg-3B in a US winter wheat panel and can be potentially used for screening the QTL in breeding programs.


Asunto(s)
Dípteros , Herbivoria , Sitios de Carácter Cuantitativo , Triticum/genética , Alelos , Animales , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple
20.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068250

RESUMEN

Chinese galls are the result of hyperplasia in host plants induced by aphids. The metabolism and gene expression of these galls are modified to accommodate the aphids. Here, we highlight the molecular and histologic features of horned galls according to transcriptome and anatomical structures. In primary pathways, genes were found to be unevenly shifted and selectively expressed in the galls and leaves near the galls (LNG). Pathways for amino acid synthesis and degradation were also unevenly shifted, favoring enhanced accumulation of essential amino acids in galls for aphids. Although galls enhanced the biosynthesis of glucose, which is directly available to aphids, glucose content in the gall tissues was lower due to the feeding of aphids. Pathways of gall growth were up-regulated to provide enough space for aphids. In addition, the horned gall has specialized branched schizogenous ducts and expanded xylem in the stalk, which provide a broader feeding surface for aphids and improve the efficiency of transportation and nutrient exchange. Notably, the gene expression in the LNG showed a similar pattern to that of the galls, but on a smaller scale. We suppose the aphids manipulate galls to their advantage, and galls lessen competition by functioning as a medium between the aphids and their host plants.


Asunto(s)
Áfidos/fisiología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Tumores de Planta/genética , Animales , Perfilación de la Expresión Génica , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Tumores de Planta/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...