Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 19(7): 962-969, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965346

RESUMEN

Quantum materials exhibit dissipationless topological edge state transport with quantized Hall conductance, offering notable potential for fault-tolerant computing technologies. However, the development of topological edge state-based computing devices remains a challenge. Here we report the selective and quasi-continuous ferroelectric switching of topological Chern insulator devices, showcasing a proof-of-concept demonstration in noise-immune neuromorphic computing. We fabricate this ferroelectric Chern insulator device by encapsulating magic-angle twisted bilayer graphene with doubly aligned h-BN layers and observe the coexistence of the interfacial ferroelectricity and the topological Chern insulating states. The observed ferroelectricity exhibits an anisotropic dependence on the in-plane magnetic field. By tuning the amplitude of the gate voltage pulses, we achieve ferroelectric switching between any pair of Chern insulating states in the presence of a finite magnetic field, resulting in 1,280 ferroelectric states with distinguishable Hall resistance levels on a single device. Furthermore, we demonstrate deterministic switching between two arbitrary levels among the record-high number of ferroelectric states. This unique switching capability enables the implementation of a convolutional neural network resistant to external noise, utilizing the quantized Hall conductance levels of the Chern insulator device as weights. Our study provides a promising avenue towards the development of topological quantum neuromorphic computing, where functionality and performance can be drastically enhanced by topological quantum materials.

2.
Sci Adv ; 8(49): eabq6833, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490344

RESUMEN

The building block of in-memory computing with spintronic devices is mainly based on the magnetic tunnel junction with perpendicular interfacial anisotropy (p-MTJ). The resulting asymmetric write and readout operations impose challenges in downscaling and direct cascadability of p-MTJ devices. Here, we propose that a previously unimplemented symmetric write and readout mechanism can be realized in perpendicular-anisotropy spin-orbit (PASO) quantum materials based on Fe3GeTe2 and WTe2. We demonstrate that field-free and deterministic reversal of the perpendicular magnetization can be achieved using unconventional charge-to-z-spin conversion. The resulting magnetic state can be readily probed with its intrinsic inverse process, i.e., z-spin-to-charge conversion. Using the PASO quantum material as a fundamental building block, we implement the functionally complete set of logic-in-memory operations and a more complex nonvolatile half-adder logic function. Our work highlights the potential of PASO quantum materials for the development of scalable energy-efficient and ultrafast spintronic computing.

3.
Nature ; 609(7927): 479-484, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104555

RESUMEN

Studying strong electron correlations has been an essential driving force for pushing the frontiers of condensed matter physics. In particular, in the vicinity of correlation-driven quantum phase transitions (QPTs), quantum critical fluctuations of multiple degrees of freedom facilitate exotic many-body states and quantum critical behaviours beyond Landau's framework1. Recently, moiré heterostructures of van der Waals materials have been demonstrated as highly tunable quantum platforms for exploring fascinating, strongly correlated quantum physics2-22. Here we report the observation of tunable quantum criticalities in an experimental simulator of the extended Hubbard model with spin-valley isospins arising in chiral-stacked twisted double bilayer graphene (cTDBG). Scaling analysis shows a quantum two-stage criticality manifesting two distinct quantum critical points as the generalized Wigner crystal transits to a Fermi liquid by varying the displacement field, suggesting the emergence of a critical intermediate phase. The quantum two-stage criticality evolves into a quantum pseudo criticality as a high parallel magnetic field is applied. In such a pseudo criticality, we find that the quantum critical scaling is only valid above a critical temperature, indicating a weak first-order QPT therein. Our results demonstrate a highly tunable solid-state simulator with intricate interplay of multiple degrees of freedom for exploring exotic quantum critical states and behaviours.

4.
Adv Mater ; 34(42): e2205996, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36043946

RESUMEN

Moiré superlattices that consist of two or more layers of 2D materials stacked together with a small twist angle have emerged as a tunable platform to realize various correlated and topological phases, such as Mott insulators, unconventional superconductivity, and quantum anomalous Hall effect. Recently, magic-angle twisted trilayer graphene (MATTG) has shown both robust superconductivity similar to magic-angle twisted bilayer graphene and other unique properties, including the Pauli-limit violating and re-entrant superconductivity. These rich properties are deeply rooted in its electronic structure under the influence of distinct moiré potential and mirror symmetry. Here, combining nanometer-scale spatially resolved angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy, the as-yet unexplored band structure of MATTG near charge neutrality is systematically measured. These measurements reveal the coexistence of the distinct dispersive Dirac band with the emergent moiré flat band, showing nice agreement with the theoretical calculations. These results serve as a stepstone for further understanding of the unconventional superconductivity in MATTG.

5.
Econ Anal Policy ; 75: 362-377, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35702269

RESUMEN

This paper examines the first wave spread of COVID-19 in China and its impact on TFP growth for 2020, and assess the role of anti-epidemic lockdown policy in suppressing the pandemic. Methodologically, we systematically quantify the disparity in the pandemic's productivity impact and the role of lockdown policies across regions, by combining the prefecture-level TFP growth for 422 regions (including 276 municipal cites and 146 county regions) with the daily statistics on the pandemic. Our results show that the negative impact of the COVID-19 pandemic on TFP growth are more likely to occur in municipal cities, compared to rural areas. Moreover, the anti-epidemic quarantine policy succeeded to bring the COVID-19 pandemic down in China, but it may generate additional costs through dampening TFP growth if overused. Given the regions either with a relative higher resilience level or in the remote rural areas suffered more from the strict regulation. A more flexible policy is required to be designed so as to mitigate the ongoing COVID-19 impacts in future. These findings provide useful insights for China, as well as other Asian developing countries, to cope with its continuing episodes.

6.
Adv Mater ; 32(42): e2004533, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32924236

RESUMEN

By virtue of the layered structure, van der Waals (vdW) magnets are sensitive to the lattice deformation controlled by the external strain, providing an ideal platform to explore the one-step magnetization reversal that is still conceptual in conventional magnets due to the limited strain-tuning range of the coercive field. In this study, a uniaxial tensile strain is applied to thin flakes of the vdW magnet Fe3 GeTe2 (FGT), and a dramatic increase of the coercive field (Hc ) by more than 150% with an applied strain of 0.32% is observed. Moreover, the change of the transition temperatures between the different magnetic phases under strain is investigated, and the phase diagram of FGT in the strain-temperature plane is obtained. Comparing the phase diagram with theoretical results, the strain-tunable magnetism is attributed to the sensitive change of magnetic anisotropy energy. Remarkably, strain allows an ultrasensitive magnetization reversal to be achieved, which may promote the development of novel straintronic device applications.

7.
Water Sci Technol ; 71(10): 1463-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442487

RESUMEN

The calculation of an ecological compensation standard is an important, but also difficult aspect of current ecological compensation research. In this paper, the factors affecting the ecological-economic system in the Xiao Honghe River Basin, China, including the flow of energy, materials, and money, were calculated using the emergy analysis method. A consideration of the relationships between the ecological-economic value of water resources and ecological compensation allowed the ecological-economic value to be calculated. On this basis, the amount of water needed for dilution was used to develop a calculation model for the ecological compensation standard of the basin. Using the Xiao Honghe River Basin as an example, the value of water resources and the ecological compensation standard were calculated using this model according to the emission levels of the main pollutant in the basin, chemical oxygen demand. The compensation standards calculated for the research areas in Xipin, Shangcai, Pingyu, and Xincai were 34.91 yuan/m3, 32.97 yuan/m3, 35.99 yuan/m3, and 34.70 yuan/m3, respectively, and such research output would help to generate and support new approaches to the long-term ecological protection of the basin and improvement of the ecological compensation system.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/normas , Ríos/química , Recursos Hídricos , China , Conservación de los Recursos Naturales , Monitoreo del Ambiente/economía , Monitoreo del Ambiente/métodos , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...