Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Expert Opin Ther Pat ; : 1-17, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38849323

RESUMEN

INTRODUCTION: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1ß) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8+ T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment. AREAS COVERED: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI. EXPERT OPINION: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.

2.
Mol Cell Probes ; 76: 101964, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38810840

RESUMEN

Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.

3.
Phytother Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761036

RESUMEN

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

4.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778121

RESUMEN

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Asunto(s)
Artemisininas , Proliferación Celular , Daño del ADN , Receptores ErbB , GTP Fosfohidrolasas , Neoplasias Pulmonares , Proteínas de la Membrana , Transducción de Señal , Receptores ErbB/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Artemisininas/farmacología , Daño del ADN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Células A549 , Ratones , Antineoplásicos/farmacología , Línea Celular Tumoral , Unión Proteica
5.
Vet Microbiol ; 291: 110034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432076

RESUMEN

Bovine viral diarrhea virus (BVDV) has caused massive economic losses in the cattle business worldwide. Fatty acid synthase (FASN), a key enzyme of the fatty acid synthesis (FAS) pathway, has been shown to support virus replication. To investigate the role of fatty acids (FAs) in BVDV infection, we infected CD8+T lymphocytes obtained from healthy cattle with BVDV in vitro. During early cytopathic (CP) and noncytopathic (NCP) BVDV infection in CD8+ T cells, there is an increase in de novo lipid biosynthesis, resulting in elevated levels of free fatty acids (FFAs) and triglycerides (TG). BVDV infection promotes de novo lipid biosynthesis in a dose-dependent manner. Treatment with the FASN inhibitor C75 significantly reduces the phosphorylation of PI3K and AKT in BVDV-infected CD8+ T cells, while inhibition of PI3K with LY294002 decreases FASN expression. Both CP and NCP BVDV strains promote de novo fatty acid synthesis by activating the PI3K/AKT pathway. Further investigation shows that pharmacological inhibitors targeting FASN and PI3K concurrently reduce FFAs, TG levels, and ATP production, effectively inhibiting BVDV replication. Conversely, the in vitro supplementation of oleic acid (OA) to replace fatty acids successfully restored BVDV replication, underscoring the impact of abnormal de novo fatty acid metabolism on BVDV replication. Intriguingly, during BVDV infection of CD8+T cells, the use of FASN inhibitors prompted the production of IFN-α and IFN-ß, as well as the expression of interferon-stimulated genes (ISGs). Moreover, FASN inhibitors induce TBK-1 phosphorylation through the activation of RIG-1 and MDA-5, subsequently activating IRF-3 and ultimately enhancing the IFN-1 response. In conclusion, our study demonstrates that BVDV infection activates the PI3K/AKT pathway to boost de novo fatty acid synthesis, and inhibition of FASN suppresses BVDV replication by activating the RIG-1/MDA-5-dependent IFN response.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Bovinos , Animales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Virus de la Diarrea Viral Bovina/fisiología , Linfocitos T CD8-positivos , Ácidos Grasos , Lípidos
6.
Photodiagnosis Photodyn Ther ; 45: 103917, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042236

RESUMEN

OBJECTIVE: Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS: Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS: Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION: Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.


Asunto(s)
Benzodioxoles , Bencilisoquinolinas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Daño del ADN , ADN
7.
Photodiagnosis Photodyn Ther ; 45: 103945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135108

RESUMEN

OBJECTIVE: Prompt and effective wound repair is an essential strategy to promote recovery and prevent infection in patients with various types of trauma. Platelets can release a variety of growth factors upon activation to facilitate revascularization and tissue repair, provided that their activation is uncontrollable. The present study is designed to explore the selective activation of platelets by photodynamic and photothermal effects (PDE/PTE) as well as the trauma repair mediated by PDE/PTE. MATERIALS AND METHODS: In the current research, platelets were extracted from the blood of mice. Indocyanine green (ICG) was applied to induce PDE/PTE. The uptake of ICG by platelets was detected by laser confocal microscopy and flow cytometry. The cellular integrity was measured by microscopy. The reactive oxygen species (ROS) generation and temperature of platelets were assayed by 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) and temperature detector. The activation of platelets was measured by western blots (WB), dynamic light scattering (DLS), and scanning electron microscopy (SEM). The release of growth factor was detected by enzyme-linked immuno sorbent assay (Elisa), wherein the in vitro cell proliferation was investigated by 5-Ethynyl-2'-deoxyuridine (EDU) assay. The wound infection rates model and histological examination were constructed to assay the ICG-loaded platelet-mediated wound repair. RESULTS: Platelets could load with ICG, a kind of photodynamic and photothermal agent, as carriers and remain intact. Near-infrared (NIR) laser irradiation of ICG-loaded platelets (ICG@PLT) facilitated higher temperature and ROS generation, which immediately activated ICG@PLT, as characterized by increased membrane p-selectin (CD62p), cyclooxygenase-2 (COX-2), thromboxane A2 receptor (TXA2R) expression, elevated hydrated particle size, and prominent aggregation in platelets. Further investigation revealed that massive insulin-like growth factor (IGF) and platelet-derived growth factor (PDGF) were released from the activated ICG@PLT, which also promoted the proliferation of endothelial cells and keratinocytes in co-culture. In consequence, activated platelets and increased neovascularization could be observed in rats with wound infection treated by ICG@PLT in the presence of NIR. More impressively, the hydrogel containing ICG@PLT accelerated wound healing and suppressed inflammation under NIR, exhibiting excellent wound repair properties. CONCLUSION: Taken together, the current work identified that platelets could be activated by PDE/PTE and thereby release growth factor, potentiating wound repair in a controlled manner.


Asunto(s)
Fotoquimioterapia , Infección de Heridas , Humanos , Ratones , Ratas , Animales , Verde de Indocianina/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Cicatrización de Heridas , Péptidos y Proteínas de Señalización Intercelular , Línea Celular Tumoral
8.
Front Pharmacol ; 14: 1150861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538178

RESUMEN

Breast cancer is the most prevalent malignancy among women. Doxorubicin (Dox) resistance was one of the major obstacles to improving the clinical outcome of breast cancer patients. The purpose of this study was to investigate the relationship between the FABP signaling pathway and Dox resistance in breast cancer. The resistance property of MCF-7/ADR cells was evaluated employing CCK-8, Western blot (WB), and confocal microscopy techniques. The glycolipid metabolic properties of MCF-7 and MCF-7/ADR cells were identified using transmission electron microscopy, PAS, and Oil Red O staining. FABP5 and CaMKII expression levels were assessed through GEO and WB approaches. The intracellular calcium level was determined by flow cytometry. Clinical breast cancer patient's tumor tissues were evaluated by immunohistochemistry to determine FABP5 and p-CaMKII protein expression. In the presence or absence of FABP5 siRNA or the FABP5-specific inhibitor SBFI-26, Dox resistance was investigated utilizing CCK-8, WB, and colony formation methods, and intracellular calcium level was examined. The binding ability of Dox was explored by molecular docking analysis. The results indicated that the MCF-7/ADR cells we employed were Dox-resistant MCF-7 cells. FABP5 expression was considerably elevated in MCF-7/ADR cells compared to parent MCF-7 cells. FABP5 and p-CaMKII expression were increased in resistant patients than in sensitive individuals. Inhibition of the protein expression of FABP5 by siRNA or inhibitor increased Dox sensitivity in MCF-7/ADR cells and lowered intracellular calcium, PPARγ, and autophagy. Molecular docking results showed that FABP5 binds more powerfully to Dox than the known drug resistance-associated protein P-GP. In summary, the PPARγ and CaMKII axis mediated by FABP5 plays a crucial role in breast cancer chemoresistance. FABP5 is a potentially targetable protein and therapeutic biomarker for the treatment of Dox resistance in breast cancer.

9.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567571

RESUMEN

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Asunto(s)
Ferroptosis , Macrófagos , Inmunoterapia , Hierro , Nanotecnología , Microambiente Tumoral
10.
J Med Chem ; 66(8): 5584-5610, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37027512

RESUMEN

Stimulator of interferon gene (STING) is a critical adaptor protein that has a pivotal role in triggering inherent immune responses to infection. STING-linked interferon production has been involved in anti-inflammation, anti-infection, and antitumor immunity. Herein, a series of amidobenzimidazole analogues as STING agonists were profiled for potency and drug-like properties. By structure-based modification and optimization based on mono-aminobenzimidazole (ABZI), analogues with nanomolar STING agonistic activities were obtained. Among them, compounds D59 and D61 significantly increased the transcription of IFN-ß and proinflammatory cytokine CXCL10, as well as dramatically induced the phosphorylation of STING downstream proteins in THP1 cells. Furthermore, compound D61 exhibited favorable pharmacokinetic properties and metabolic stabilities. In a CT-26 syngeneic mice-bearing tumor model, D61 effectively inhibited tumor growth with good tolerance when administered via intratumoral, intravenous, intraperitoneal, and oral routes. This research on orally bioavailable amidobenzimidazole analogues expands the diversity of chemical structures of agonists for STING-mediated immunotherapy.


Asunto(s)
Neoplasias , Receptores de Interferón , Animales , Ratones , Fosforilación , Interferones
11.
J Biochem Mol Toxicol ; 37(6): e23329, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36808658

RESUMEN

Doxorubicin (DOX), is a high efficiency anthracycline antitumor drug. However, the clinical application of DOX is limited mainly by dose-related adverse drug reactions. Currently, the therapeutic effects of Atorvastatin (ATO) on DOX-induced hepatotoxicity were studied in vivo. The results indicated that DOX impaired hepatic function, as measured by an increased levels of liver weight index and serum concentrations of aspartate transaminase and alanine transaminase, as well as alteration of hepatic histology. In addition, DOX increased the serum levles of triglyceride (TG) and nonestesterified fatty acid. ATO prevented these changes. Mechanical analysis revealed that ATO restored the changes of malondialdehyde, reactive oxygen radical species, glutathione peroxidase and manganese superoxide dismutase. Additionally, ATO inhibited the increased expression levels of nuclear factor-kappa B and interleukin 1ß, hence suppressing inflammation. Meanwhile, ATO inhibited cell apoptosis by dramatically decreasing the Bax/Bcl-2 ratio. In addition, ATO mitigated the lipidtoxicity by inhibiting the adipolysis of TG and accelerating hepatic lipid metabolism. Taken together, the results suggest ATO has therapeutic effect on DOX-induced hepatotoxicity via inhibition of oxidative damage, inflammatory and apoptosis. In addition, ATO attenuates DOX-induced hyperlipidemia via modulation of lipid metabolism.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Atorvastatina/farmacología , Doxorrubicina/toxicidad , Estrés Oxidativo , Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Apoptosis
12.
Adv Sci (Weinh) ; 10(3): e2205462, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453571

RESUMEN

Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin ß3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.


Asunto(s)
Neoplasias Pulmonares , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Receptor Toll-Like 2/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Microambiente Tumoral
13.
Dis Markers ; 2021: 8223216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966465

RESUMEN

A lot of evidence has emphasized the function of long noncoding RNAs (lncRNAs) in tumors' development and progression. Nevertheless, there is still a lack of lncRNA biomarkers that can predict the prognosis of acute myeloid leukemia (AML). Our goal was to develop a lncRNA marker with prognostic value for the survival of AML. AML patients' RNA sequencing data as well as clinical characteristics were obtained from the public TARGET database. Then, differentially expressed lncRNAs were identified in female and male AML samples. By adopting univariate and multivariate Cox regression analyses, AML patients' survival was predicted by a seven-lncRNA signature. It was found that 95 abnormal expressed lncRNAs existed in AML. Then, the analysis of multivariate Cox regression showed that, among them, 7 (LINC00461, RP11-309M23.1, AC016735.2, RP11-61I13.3, KIAA0087, RORB-AS1, and AC012354.6) had an obvious prognostic value, and according to their cumulative risk scores, these 7 lncRNA signatures could independently predict the AML patients' overall survival. Overall, the prognosis of AML patients could be predicted by a reliable tool, that is, seven-lncRNA prognostic signature.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Mieloide Aguda/genética , Pronóstico , ARN Largo no Codificante/genética , Sobrevida , Bases de Datos Factuales , Femenino , Humanos , Masculino , Modelos Estadísticos
14.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638687

RESUMEN

Exosomes are associated with cancer progression, pregnancy, cardiovascular diseases, central nervous system-related diseases, immune responses and viral pathogenicity. However, study on the role of exosomes in the immune response of teleost fish, especially antiviral immunity, is limited. Herein, serum-derived exosomes from mandarin fish were used to investigate the antiviral effect on the exosomes of teleost fish. Exosomes isolated from mandarin fish serum by ultra-centrifugation were internalized by mandarin fish fry cells and were able to inhibit Infectious spleen and kidney necrosis virus (ISKNV) infection. To further investigate the underlying mechanisms of exosomes in inhibiting ISKNV infection, the protein composition of serum-derived exosomes was analyzed by mass spectrometry. It was found that myxovirus resistance 1 (Mx1) was incorporated by exosomes. Furthermore, the mandarin fish Mx1 protein was proven to be transferred into the recipient cells though exosomes. Our results showed that the serum-derived exosomes from mandarin fish could inhibit ISKNV replication, which suggested an underlying mechanism of the exosome antivirus in that it incorporates Mx1 protein and delivery into recipient cells. This study provided evidence for the important antiviral role of exosomes in the immune system of teleost fish.


Asunto(s)
Infecciones por Virus ADN , Exosomas , Enfermedades de los Peces , Proteínas de Peces , Peces , Iridoviridae , Proteínas de Resistencia a Mixovirus , Animales , Línea Celular , Infecciones por Virus ADN/sangre , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Exosomas/inmunología , Exosomas/metabolismo , Enfermedades de los Peces/sangre , Enfermedades de los Peces/inmunología , Proteínas de Peces/sangre , Proteínas de Peces/inmunología , Peces/sangre , Peces/inmunología , Peces/virología , Iridoviridae/inmunología , Iridoviridae/metabolismo , Proteínas de Resistencia a Mixovirus/sangre , Proteínas de Resistencia a Mixovirus/inmunología
15.
Chem Commun (Camb) ; 57(77): 9890-9893, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34494033

RESUMEN

Two newly synthesized ultra-small copper nanoclusters, [Cu3(µ3-H)(µ2-dppy)4](ClO4)2 (1) and [Cu4(µ4-H)(µ2-dppy)4(µ2-Cl)2](ClO4) (2) (dppy = diphenyl-2-pyridylphosphine), have been shown to exhibit ultrabright yellow and yellow-green room-temperature phosphorescence (RTP) emission, with high quantum yields of 71.8% and 63.5%, respectively. Therefore, nanocluster 1 has been applied for the first time as a single component phosphor for yellow and white light-emitting diodes (LEDs) with favourable characteristics.

16.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2589-2596, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34313077

RESUMEN

Soil fungi play an important role in soil nutrient cycling and carbon storage in natural ecosystems. Dominant tree species showed altitude distribution in Huoditang forest in Qinling Mountains, whereas the corresponding changes of soil characteristics and microbial communities are still unclear. In this study, the variations of soil characteristics were investigated at five altitudes (1500, 1700, 1900, 2100 and 2300 m). The collected soil samples were sequenced by Illumina MiSeq sequencing platform, and the pattern of fungal community was studied. The results showed that soil available phosphorus concentration (AP) and soil pH increased significantly whereas soil moisture showed a downward trend with increasing altitude. The Shannon diversity index of soil fungi decreased and ACE richness index showed an opposite trend with increasing altitude. Basidiomycota (68.2%), Ascomycota (19.9%), and Mortierellomycota (1.7%) were dominant fungal phyla, which showed a 'U' shape or 'peak' pattern according to altitude. Agaricomycetes (64.2%), Sordariomycetes (5.8%), and Leotiomycetes (4.1%) were the dominant fungal classes. Results of redundancy analysis (RDA) showed that 89.1% of the total variations of soil fungal community were explained by soil characteristics, while AP, pH and altitude were the main driving factors for altitude variations of soil fungal communities. Soil characteristics had certain differences with altitude changes in Huoditang forest region in Qinling Mountains, which affected soil fungal community composition.


Asunto(s)
Ascomicetos , Micobioma , Altitud , China , Ecosistema , Hongos/genética , Suelo , Microbiología del Suelo
17.
Eur J Med Chem ; 223: 113604, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34174740

RESUMEN

Glucose-regulated protein 94 (Grp94), a member of the Heat shock protein 90 (Hsp90) family, is implicated in many human diseases, including cancer, neurodegeneration, inflammatory, and infectious diseases. Here, we describe our effort to design and develop a new series of Grp94 inhibitors based on Phe199 induced fit mechanism. Using an alkynyl-containing inhibitor as a starting point, we developed compound 4, which showed potent inhibitory activity toward Grp94 in a fluorescence polarization-based assay. With improved physicochemical properties and suitable pharmacokinetic properties, compound 4 was advanced into in vivo bioactivity evaluation. In a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis (UC), compound 4 showed anti-inflammatory property and reduced the levels of pro-inflammatory cytokines (TNF-α and IL-6). Together, these findings provide evidence that this approach may be promising for further Grp94 drug development efforts.


Asunto(s)
Alquinos/uso terapéutico , Antiinflamatorios/uso terapéutico , Benzamidas/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Glicoproteínas de Membrana/antagonistas & inhibidores , Alquinos/síntesis química , Alquinos/metabolismo , Alquinos/farmacocinética , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Benzamidas/síntesis química , Benzamidas/metabolismo , Benzamidas/farmacocinética , Colitis Ulcerosa/patología , Colon/efectos de los fármacos , Colon/patología , Células HCT116 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
18.
Ying Yong Sheng Tai Xue Bao ; 32(5): 1545-1553, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34042348

RESUMEN

Rapid urbanization destroys the ecological network connectivity among habitat patches. The research on the construction of regional ecological network at the patch level is obviously insufficient. The morphological spatial pattern analysis (MSPA) and minimum cumulative resistance (MCR) were used to identify ecological sources and to extract potential ecological corridors in Qinling Mountains, respectively. The ecological network was effectively constructed. We analyzed the structural characteristics and landscape compositions of the network. Based on the gravity model, the importance of patches in the ecological network was graded and the structural characteristics and landscape composition of the network were analyzed. The results showed that there were 10 ecological sources, 45 potential ecological corridors and 38 stepping stones in the ecological network of Qinling Mountains in Shaanxi Province, with a total area of 29686.15 km2. There were good connectivity in potential ecological corridors and ecological network nodes as indicated by network closure (0.11), line point rate (1.18), network connectivity (0.42) and cost ratio (0.99). The connectivity between ecological source was low, but the cost of network reconstruction was high. The important ecological corridors were mainly composed of forest, grassland, and cultivated land. Fore-sts accounted for 89.2% of the total corridor area (571.00 km2), indicating the good landscape structure in Qinling Mountains. The protection of ecological source areas must be strengthened, and priority should be given to the establishment and protection of important ecological corridors and ecological nodes. Our results would provide the scientific reference and basis for the ecological environment protection and high-quality development in Qinling Mountains.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , China , Bosques , Urbanización
19.
Expert Opin Ther Pat ; 31(6): 563-584, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33459063

RESUMEN

INTRODUCTION: Stimulator of interferon genes (STING) is a transmembrane protein that localizes in the endoplasmic reticulum. As a crucial adaptor protein in the pathway of sensing cytosolic DNA, STING can regulate innate immune response by inducing the secretion of type Ι interferons and other cytokines after recognizing endogenous or exogenous DNA. Due to the key role of STING in the innate immune system, activation of the STING signaling pathway is expected to be an efficacious immunotherapeutic tactic for cancer and infectious diseases caused by pathogens. AREAS COVERED: This review summarizes the structures and biological activities of STING agonists published from 2008 to present, the progress in its structural modification of STING agonists, and the development of their clinical study. EXPERT OPINION: STING is an important adaptor protein in the process of triggering the innate immune response to viral infection. So far, substantial STING agonists and inhibitors have been published, and their viable curative effects for diverse diseases prove that STING is a promising therapeutic target.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Membrana/agonistas , Neoplasias/tratamiento farmacológico , Animales , Citocinas/inmunología , Desarrollo de Medicamentos , Humanos , Inmunidad Innata/inmunología , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Patentes como Asunto , Transducción de Señal/efectos de los fármacos
20.
Expert Opin Ther Pat ; 31(1): 67-80, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32990109

RESUMEN

INTRODUCTION: Heat shock protein 90 (Hsp90) is one of the most critical chaperones amenable to mediating the folding and maturation of more than 300 client proteins. In normal cells, Hsp90 chaperone cycle is required for regulating multiple cellular processes to maintain homeostasis. However, extremely overexpressed Hsp90 in neoplastic cells results in the dysregulation of client proteins, many of which are indispensable to the accumulation of cancer hallmarks, such as infinite proliferation and increased invasiveness. Consequently, modulation of Hsp90 activity has been considered as a potential strategy for cancer treatment. AREAS COVERED: This review recapitulated recent patents' progress in the development of Hsp90 inhibitors with potent antitumor activities during 2013 to present. Besides, the structural-activity relationships of the patented inhibitors and their structural similarity were also discussed. EXPERT OPINION: Hsp90, as an anticancer target, has been investigated for several decades. The first generation of Hsp90 inhibitors exhibited potent antitumor activities in preclinical trials but were trapped in different phases of clinical trials. The second generation of Hsp90 inhibitors has been identified with increased specificity and security through structure modification. Moreover, these inhibitors may offer opportunities for studies of Hsp90 chaperone and development of Hsp90 inhibition therapy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Diseño de Fármacos , Desarrollo de Medicamentos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias/patología , Patentes como Asunto , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA