Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1368188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933540

RESUMEN

This study aimed to develop and validate a bone marrow edema model using a magnetic resonance imaging-based radiomics nomogram for the diagnosis of osteoarthritis. Clinical and magnetic resonance imaging (MRI) data of 302 patients with and without osteoarthritis were retrospectively collected from April 2022 to October 2023 at Longhua Hospital affiliated with the Shanghai University of Traditional Chinese Medicine. The participants were randomly divided into two groups (a training group, n = 211 and a testing group, n = 91). We used logistic regression to analyze clinical characteristics and established a clinical model. Radiomics signatures were developed by extracting radiomic features from the bone marrow edema area using MRI. A nomogram was developed based on the rad-score and clinical characteristics. The diagnostic performance of the three models was compared using the receiver operating characteristic curve and Delong's test. The accuracy and clinical application value of the nomogram were evaluated using calibration curve and decision curve analysis. Clinical characteristics such as age, radiographic grading, Western Ontario and McMaster Universities Arthritis Index score, and radiological features were significantly correlated with the diagnosis of osteoarthritis. The Rad score was constructed from 11 radiological features. A clinical model was developed to diagnose osteoarthritis (training group: area under the curve [AUC], 0.819; testing group: AUC, 0.815). Radiomics models were used to effectively diagnose osteoarthritis (training group,: AUC, 0.901; testing group: AUC, 0.841). The nomogram model composed of Rad score and clinical characteristics had better diagnostic performance than a simple clinical model (training group: AUC, 0.906; testing group: AUC, 0.845; p < 0.01). Based on DCA, the nomogram model can provide better diagnostic performance in most cases. In conclusion, the MRI-bone marrow edema-based radiomics-clinical nomogram model showed good performance in diagnosing early osteoarthritis.

2.
Front Med ; 18(2): 237-257, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619691

RESUMEN

Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.


Asunto(s)
Progresión de la Enfermedad , Osteoartritis , Osteoprotegerina , Humanos , Osteoartritis/patología , Osteoartritis/fisiopatología , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoprotegerina/metabolismo , Huesos/patología , Huesos/metabolismo , Ligando RANK/metabolismo , Transducción de Señal , Cartílago Articular/patología , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo
3.
Inorg Chem ; 63(12): 5520-5529, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38488014

RESUMEN

The rational design of nonnoble-metal-based catalysts with high electroactivity and long-term stability, featuring controllable active sites, remains a significant challenge for achieving effective water electrolysis. Herein, a heterogeneous catalyst with a FeCo-S and Ni2P heterostructure (denoted FeCo-S/Ni2P/NF) grown on nickel foam (NF) was synthesized by a solvothermal method and low-temperature phosphorization. The FeCo-S/Ni2P/NF catalyst shows excellent electrocatalytic performance and stability in alkaline solution. The FeCo-S/Ni2P/NF catalyst demonstrates low overpotentials (η) for both the hydrogen evolution reaction (HER) (49 mV@10 mA cm-2) and the oxygen evolution reaction (OER) (279 mV@100 mA cm-2). Assembling the FeCo-S/Ni2P/NF catalyst as both cathode and anode in an electrolytic cell for overall water splitting (OWS) needs an ultralow cell voltage of 1.57 V to attain a current density (CD) of 300 mA cm-2. Furthermore, it demonstrates excellent durability, significantly outperforming the commercial Pt/C∥IrO2 system. The results of experiments indicate that the heterostructure and synergistic effect of FeCo-S and Ni2P can significantly enhance conductivity, facilitate mass/ion transport and gas evolution, and expose more active sites, thereby improving the catalytic activity of the electrocatalyst for the OWS. This study provides a rational approach for the development of commercially promising dual-functional electrocatalysts.

4.
Inorg Chem ; 63(14): 6324-6334, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530282

RESUMEN

The bottleneck in the preparation of supercapacitors is how to develop high-energy and high-power-density devices by using appropriate materials. Herein, a novel NixCo3-x-B/GO heterostructure material was synthesized through a simple ultrasonic and precipitation method. The prepared NixCo3-x-B/GO heterostructure exhibits significant improvements in supercapacitor performance than NixCo3-x-B. The presence of GO effectively suppresses the excessive growth and accumulation of NixCo3-x-B; therefore, Ni2.7Co0.3-B/GO exhibits the best performance as an electrode material for supercapacitors: a high specific capacitance (Cm, 1789.72 F g-1@1 A g-1) and excellent rate performance. The asymmetric supercapacitor (ASC) device of Ni2.7Co0.3-B/GO//AC exhibits a Cm of 76.6 F g-1@1 A g-1, a large voltage window of 1.6 V, and a high energy density (ED) of 98.0 Wh kg-1. Furthermore, a flexible, all-solid-state supercapacitor assembled with Ni2.7Co0.3-B/GO as both the positive and negative electrodes demonstrates a Cm of 46.9 F g-1@1 A g-1. Even after multiple folding and bending at various angles, the device maintains excellent performance, showcasing remarkable stability. With a power density (PD) of 479.7 W kg-1, the device achieves a high ED of 60.0 Wh kg-1. This work provides valuable insights into the synergistic effects in electrochemical processes based on heterostructure materials.

5.
Plants (Basel) ; 13(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38256787

RESUMEN

Sorghum mosaic virus (SrMV) is one of the most prevalent viruses deteriorating sugarcane production. Salicylic acid (SA) plays an essential role in the defense mechanism of plants and its exogenous application has been observed to induce the resistance against biotic and abiotic stressors. In this study, we set out to investigate the mechanism by which sorghum mosaic virus (SrMV) infected sugarcane responds to SA treatment in two sugarcane cultivars, i.e., ROC22 and Xuezhe. Notably, significantly low viral populations were observed at different time points (except for 28 d in ROC22) in response to post-SA application in both cultivars as compared to control based on qPCR data. Furthermore, the lowest number of population size in Xuezhe (20 copies/µL) and ROC22 (95 copies/µL) was observed in response to 1 mM exogenous SA application. A total of 2999 DEGs were identified, of which 731 and 2268 DEGs were up- and down-regulated, respectively. Moreover, a total of 806 DEGs were annotated to GO enrichment categories: 348 biological processes, 280 molecular functions, and 178 cellular components. GO functional categorization revealed that DEGs were mainly enriched in metabolic processes, extracellular regions, and glucosyltransferase activity, while KEGG annotation revealed that DEGs were mainly concentrated in phenylpropanoid biosynthesis and plant-pathogen interaction suggesting the involvement of these pathways in SA-induced disease resistance of sugarcane in response to SrMV infection. The RNA-seq dataset and qRT-PCR assay showed that the transcript levels of PR1a, PR1b, PR1c, NPR1a, NPR1b, PAL, ICS, and ABA were significantly up-regulated in response to SA treatment under SrMV infection, indicating their positive involvement in stress endorsement. Overall, this research characterized sugarcane transcriptome during SrMV infection and shed light on further interaction of plant-pathogen under exogenous application of SA treatment.

6.
Adv Sci (Weinh) ; 11(2): e2306919, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985793

RESUMEN

The design of catalysts with tunable active sites in heterogeneous interface structures is crucial for addressing challenges in the water-splitting process. Herein, a hollow spherical heterostructure FeCo-P is successfully prepared by hydrothermal and phosphorization methods. This hollow structure, along with the heterogeneous interface between Co2 P and FeP, not only facilitates the exposure of more active sites, but also increases the contact area between the catalyst and the electrolyte, as well as shortens the distance for mass/electron transfer. This enhancement promotes electron transfer to facilitate water decomposition. FeCo-P exhibits excellent hydrogen evolution (HER) and oxygen evolution (OER) performance when reaching @ 10 mA cm-2 in 1 mol L-1  KOH, with overpotentials of 131/240 mV for HER/OER. Furthermore, when FeCo-P is used as both the cathode and anode for overall water splitting (OWS), it only requires low voltages of 1.49, 1.55, and 1.57 V to achieve CDs of 10, 100, and 300 mA cm-2 , respectively. Density functional theory calculations indicate that constructing a Co2 P and FeP heterogeneous interface with good lattice matching can facilitate electron redistribution, thereby enhancing the electrocatalytic performance of OWS. This work opens up new possibilities for the rational design of efficient water electrolysis catalysts derived from MOFs.

7.
Small ; 20(16): e2307797, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38032156

RESUMEN

The rational design of inexpensive metal electrocatalysts with exciting catalytic activity for overall water splitting (OWS) remains a significant challenge. Heterostructures of NiFe layered double hydroxides (NiFe-LDHs) with abundant oxygen defects and tunable electronic properties have garnered considerable attention. Here, a self-supporting heterostructured catalyst (named MoO3/NiFe-NF) is synthesized via a hydrothermal method to grow NiFe-LDH with oxygen vacancies (OV) in situ on inexpensive nickel foam (NF). Subsequently, MoO3 is anchored and grown on the surface of NiFe-LDH by electrodeposition. The obtained catalysts achieved outstanding oxygen/hydrogen evolution reaction (OER/HER, 212 mV/85 mV@10 mA cm-2) performance in 1 m KOH. Additionally, when MoO3/NiFe-NF is utilized as the cathode and anode in OWS, a current density of 10 mA cm-2 can be obtained as an ultralow battery voltage of 1.43 V, a significantly lower value compared to the commercial electrolyzer incorporating Pt/C and IrO2 electrode materials. Finally, density functional theory (DFT) calculations and advanced spectroscopy technology are conducted to reveal the effects of heterojunctions and OV on the internal electronic structure of the electrical catalysts. Mainly, the present study provides a novel tactic for the rational design of remarkable, low-cost NiFe-LDH electrocatalysts with heterostructures for OWS.

8.
Chem Sci ; 14(46): 13518-13529, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38033891

RESUMEN

The challenge of synergistically optimizing different mechanisms limits the further improvement of plasmon-mediated photocatalytic activities. In this work, an Au/Bi24O31Br10 composite, combining an interface ohmic contact and localized surface plasmon resonance (LSPR), is prepared by a thermal reduction method. The LSPR effect induces the local resonance energy transfer effect and the local electric field enhancement effect, while the interface ohmic contact forms a stronger interface electric field. The novel synergistic interaction between the interface ohmic contact and LSPR drives effective charge separation and provides more active sites for the adsorption and activation of CO2 with improved photocatalytic efficiency. The optimized 0.6 wt% Au (5.7 nm) over Bi24O31Br10 nanosheets showed an apparently improved photocatalytic activity without any sacrificial reagents, specifically CO and O2 yields of 44.92 and 17.83 µmol g-1 h-1, and demonstrated superior stability (only lost 6%) after continuous reaction for 48 h, nearly 5-fold enhanced compared to Bi24O31Br10 and a great advantage compared with other bismuth-based photocatalysts.

9.
Heliyon ; 9(11): e21393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954328

RESUMEN

Environmental taxes are important means by which governments can address environmental pollution problems. Amid increasingly severe global warming, how should environmental taxes be used to better combat pollution and reduce emissions to promote sustainable socioeconomic development? This empirical analysis explores the influence of environmental taxes on CO2 emissions by utilizing a spatial Durbin model constructed with panel data from 2006 to 2020 encompassing 30 provinces, autonomous regions, and municipalities under the direct jurisdiction of China's central government. First, we found that a strong spatial auto-correlation exists between carbon emission intensity and environmental taxes at the geographic and economic levels in each province. The characteristics of high-high and low-low agglomeration are consistent with the actual situation where each province has a strong regional correlation. Second, the estimation results of environmental taxes' spatial effect on carbon emissions show that under the neighboring space weight matrix, environmental taxes and fees can not only better promote regional carbon emission reduction but also reduce the carbon emissions of neighboring regions. Under the economic distance weight matrix, environmental taxes' impact on reducing carbon emission intensity in the province is not significant, but it can promote the reduction of carbon emissions in the economically neighboring provinces. Additionally, the results of the sub-tax estimation of environmental taxes and carbon emission intensity show that differences exist in the impacts of different environmental taxes on carbon emission intensity under different weight matrices. Among them, environmental protection, resource, vehicle and vessel, and urban land use taxes are basically unfavorable in reducing carbon emission intensity in a region and its neighboring regions, while urban maintenance and construction and cultivated land occupation taxes enhance carbon emission reduction. Our findings suggest that efficiently promoting carbon emissions reduction requires effectively utilizing the spatial effects of environmental taxes and carbon emissions, establishing and improving the regional carbon emissions reduction linkage mechanism, including carbon dioxide in the scope of taxation to further strengthen environmental taxes' positive impact on carbon emission reduction, and focusing on the heterogeneity of environmental tax implementation to achieve emission reduction goals.

10.
J Colloid Interface Sci ; 649: 325-333, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37352563

RESUMEN

Photocatalytic H2 evolution is of prime importance in the energy crisis and in lessening environmental pollution. Adopting a single semiconductor as a photocatalyst remains a formidable challenge. However, the construction of an S-scheme heterojunction is a promising method for efficient water splitting. In this work, CdS nanoparticles were loaded onto NiS nanosheets to form CdS/NiS nanocomposites using hollow Ni(OH)2 as a precursor. The differences in the Fermi energy levels between the two components of CdS and NiS resulted in the formation of a built-in electric field in the nanocomposite. Density functional theory (DFT) calculations reveal that the S-scheme charge transfer driven by the built-in electric field can accelerate the effective separation of photogenerated carriers, which is conducive to efficient photocatalytic hydrogen evolution. The hydrogen evolution rate of the optimized photocatalyst is 39.68 mmol·g-1 h-1, which is 6.69 times that of CdS under visible light. This work provides a novel strategy to construct effective photocatalysts to relieve the environmental and energy crisis.

11.
Front Med (Lausanne) ; 10: 1135063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968833

RESUMEN

Purpose: This study aimed to use meta-analysis to determine the impact of resistance and balance training on athletic ability and quality of life for patients with osteoporotic vertebral fracture (OVF). Methods: This study followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) criteria for systematic reviews and meta-analyzes. The PubMed, Web of science, Cochrane, Embase, and CNKI databases were searched for randomized controlled trials (RCTs) up to September 2022. The search strategy was related to the intervention measures, population, and results, and was structured around the search terms: "Exercise," "Osteoporotic vertebral fracture," and "activities of function." Two reviewers strictly implemented the inclusion and exclusion criteria. Subgroup analyzes of age and training duration were performed for the main outcomes. Results: We included 12 RCTs (n = 1,289) of resistance and balance training in patients with OVF. Compared with controls, the intervention group showed improvements on the Quality of Life Questionnaire issued by the European Foundation for Osteoporosis, visual analog pain scale, Timed Up and Go, falls efficacy scale international (FES-I), kyphosis, and functional reach. On subgroup analysis, the effect was more significant when training continued >10 weeks. Conclusion: Resistance and balance exercise training improved function and balance, and reduced fall risk in patients with OVF. We recommend resistance and balance training for at least 10 weeks. Future multicenter, large sample trials are needed for more reliable conclusions.

12.
ACS Omega ; 8(4): 3821-3834, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743068

RESUMEN

In this work, the construction of two heterojunction photocatalysts by coordinative anchoring of M(salophen)Cl complexes (M = Fe(III) and Mn(III)) to rutile TiO2 through a silica-aminopyridine linker (SAPy) promotes the visible-light-assisted photodegradation of organic dyes. The degradation efficiency of both cationic rhodamine B (RhB) and anionic methyl orange (MO) dyes by Fe- and Mn-TiO2-based catalysts in the presence of H2O2 under sunlight and low-wattage visible bulbs (12-18 W) is investigated. Anionic MO is more degradable than cationic RhB, and the Mn catalyst shows more activity than its Fe counterpart. Action spectra demonstrate the maximum apparent quantum efficiency (AQY) at 400-450 nm, confirming the visible-light-driven photocatalytic reaction. The enhanced photocatalytic activity might be attributed to the improved charge transfer in the heterojunction photocatalysts evidenced by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analyses. A radical pathway for the photodegradation of dyes is postulated based on scavenging experiments and spectral data. This work provides new opportunities for constructing highly efficient catalysts for wastewater treatment.

13.
Inorg Chem ; 61(46): 18424-18433, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36350757

RESUMEN

A well-organized construction of hybrid metal-organic frameworks (MOFs) with exquisite structures is vital due to their potential applications. Herein, a novel hybrid nanostructure of UiO-66-on-ZIF-67, denoted as MZU-CoxZry (x and y represent the mass ratios of ZIF-67 and UiO-66, respectively), was successfully prepared by a simple method and showed a highly efficient and stable bifunctionality of both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline medium. The MZU-Co2.5Zr1 shows remarkable OER performance with a low overpotential of 252 mV and an overpotential of 172 mV @ 10 mA/cm2 for HER in 1 mol/L KOH. With MZU-Co2.5Zr1 as the cathode and anode, the integrated water decomposition device has achieved low total potentials of 1.56 V @ 10 mA/cm2 and 1.59 V @ 30 mA/cm2, exhibiting its excellent performance of overall water splitting. Based on the experimental results, the mechanism of the superior electrocatalytic performance of MZU-CoxZry was discussed. This work supplies guidance for the rational design of non-precious composites for energy conversion.

14.
Microbiol Resour Announc ; 11(11): e0090522, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314918

RESUMEN

Bacteriophage TaidaOne was isolated from soil collected in Taipei, Taiwan, using the host Streptomyces griseus. It is a siphovirus with a 56,183-bp genome that contains 86 protein-coding genes. Based on gene content similarity, it was assigned to actinobacteriophage subcluster BI1, within which only TaidaOne and GirlPower genomes contain an acetyltransferase homolog gene.

15.
Sci Rep ; 12(1): 13931, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978085

RESUMEN

Artemisia giraldii Pamp. is an herbaceous plant distributed only in some areas in China. To understand the evolutionary relationship between plastid and mitochondria in A. giraldii, we sequenced and analysed the plastome and mitogenome of A. giraldii on the basis of Illumina and Nanopore DNA sequencing data. The mitogenome was 194,298 bp long, and the plastome was 151,072 bp long. The mitogenome encoded 56 genes, and the overall GC content was 45.66%. Phylogenetic analysis of the two organelle genomes revealed that A. giraldii is located in the same branching position. We found 13 pairs of homologous sequences between the plastome and mitogenome, and only one of them might have transferred from the plastid to the mitochondria. Gene selection pressure analysis in the mitogenome showed that ccmFc, nad1, nad6, atp9, atp1 and rps12 may undergo positive selection. According to the 18 available plastome sequences, we found 17 variant sites in two hypervariable regions that can be used in completely distinguishing 18 Artemisia species. The most interesting discovery was that the mitogenome of A. giraldii was only 43,226 bp larger than the plastome. To the best of our knowledge, this study represented one of the smallest differences between all sequenced mitogenomes and plastomes from vascular plants. The above results can provide a reference for future taxonomic and molecular evolution studies of Asteraceae species.


Asunto(s)
Artemisia , Genoma Mitocondrial , Genoma de Plastidios , Artemisia/genética , Evolución Molecular , Filogenia , Plastidios/genética
16.
PLoS One ; 17(8): e0271813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35913971

RESUMEN

Codonopsis pilosula subsp. tangshen is one of the most important medicinal herbs used in traditional Chinese medicine. Correct identification of materials from C. pilosula subsp. tangshen is critical to ensure the efficacy and safety of the associated medicines. Traditional DNA molecular markers could distinguish Codonopsis species well, so we need to develop super or specific molecular markers. In this study, we reported the plastome of Codonopsis pilosula subsp. tangshen (Oliv.) D.Y. Hong conducted phylogenomic and comparative analyses in the Codonopsis genus for the first time. The entire length of the Codonopsis pilosula subsp. tangshen plastome was 170,672 bp. There were 108 genes in the plastome, including 76 protein-coding genes, 28 transfer RNA (tRNA), and four ribosomal RNA (rRNA) genes. Comparative analysis indicated that Codonopsis pilosula subsp. tangshen had an unusual large inversion in the large single-copy (LSC) region compared with the other three Codonopsis species. And there were two dispersed repeat sequences at both ends of the inverted regions, which might mediate the generation of this inversion. We found five hypervariable regions among the four Codonopsis species. PCR amplification and Sanger sequencing experiments demonstrated that two hypervariable regions could distinguish three medicinal Codonopsis species. Results obtained from this study will support taxonomic classification, discrimination, and molecular evolutionary studies of Codonopsis species.


Asunto(s)
Codonopsis , Medicamentos Herbarios Chinos , Plantas Medicinales , Codonopsis/genética , Medicina Tradicional China
17.
BMC Genomics ; 23(1): 570, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945507

RESUMEN

BACKGROUND: Saposhnikovia divaricata (Turcz.) Schischk. is a perennial herb whose dried roots are commonly used as a source of traditional medicines. To elucidate the organelle-genome-based phylogeny of Saposhnikovia species and the transfer of DNA between organelle genomes, we sequenced and characterised the mitochondrial genome (mitogenome) of S. divaricata. RESULTS: The mitogenome of S. divaricata is a circular molecule of 293,897 bp. The nucleotide composition of the mitogenome is as follows: A, 27.73%; T, 27.03%; C, 22.39%; and G, 22.85. The entire gene content is 45.24%. A total of 31 protein-coding genes, 20 tRNAs and 4 rRNAs, including one pseudogene (rpl16), were annotated in the mitogenome. Phylogenetic analysis of the organelle genomes from S. divaricata and 10 related species produced congruent phylogenetic trees. Selection pressure analysis revealed that most of the mitochondrial genes of related species are highly conserved. Moreover, 2 and 46 RNA-editing sites were found in the chloroplast genome (cpgenome) and mitogenome protein-coding regions, respectively. Finally, a comparison of the cpgenome and the mitogenome assembled from the same dataset revealed 10 mitochondrial DNA fragments with sequences similar to those in the repeat regions of the cpgenome, suggesting that the repeat regions might be transferred into the mitogenome. CONCLUSIONS: In this study, we assembled and annotated the mitogenome of S. divaricata. This study provides valuable information on the taxonomic classification and molecular evolution of members of the family Apiaceae.


Asunto(s)
Apiaceae , Genoma del Cloroplasto , Genoma Mitocondrial , Apiaceae/genética , Cloroplastos/genética , Filogenia
18.
Reprod Sci ; 29(2): 578-585, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34542890

RESUMEN

Preeclampsia (PE) is a pregnancy complication commonly characterized by high blood pressure. Although it is generally believed that the placenta is the root cause of PE, the exact pathogenesis is unknown; consequently, there is no standard clinical treatment. Therefore, it is necessary to explore new therapeutic drugs. Several studies have reported that pyrroloquinoline quinone (PQQ) exhibits anti-inflammatory and antioxidative effects. The purpose of this study was to investigate the protective effect of PQQ diet supplementation on PE-like rat models. L-NAME induced PE-like model rats were intraperitonially administrated with PQQ. The results showed that PQQ significantly improved clinical manifestations and pregnancy outcomes of PE-like rats. The levels of related inflammatory and antioxidant markers were also significantly reversed. A mechanism study showed that PQQ may achieve the above therapeutic effects by inhibiting NF-κB and promoting Nrf2 antioxidant pathways. In conclusion, we showed the protective effect of PQQ on PE-like model rats, by improving anti-inflammation and antioxidation effect through the NF-κB-Nrf2 pathway.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , NG-Nitroarginina Metil Éster/farmacología , Cofactor PQQ/uso terapéutico , Preeclampsia/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Inyecciones Intraperitoneales , Estrés Oxidativo/efectos de los fármacos , Preeclampsia/inducido químicamente , Embarazo , Ratas , Ratas Sprague-Dawley
19.
Inorg Chem ; 60(19): 14880-14891, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34505763

RESUMEN

It is challenging to generate inexpensive and noble metal-free catalysts for efficient overall water splitting (OWS). To achieve this goal, suitable tuning of the structure and composition of electrocatalytic materials is a promising approach that has attracted much attention in recent years. Herein, novel hybrid amorphous ZIF-67@Co3(PO4)2 electrocatalysts with yolk-shell structures were prepared using a reflux method. It is demonstrated that yolk-shelled ZIF-67@Co3(PO4)2 is not only an active catalyst for the hydrogen evolution reaction (HER) but also an efficient catalyst for the oxygen evolution reaction (OER). The optimized composite electrode showed superior performance with low overpotentials of 73 and 334 mV @ 10 mA·cm-2 toward HER and OER, respectively, and a low potential of 1.62 V @ 10 mA·cm-2 and 1.66 V @ 30 mA·cm-2 in a practical OWS test under alkaline conditions. N-O bonds were formed to connect the two components of ZIF-67 and Co3(PO4)2 in the composite ZIF-67@Co3(PO4)2, which indicates that the two components are synergistic but not isolated, and this synergistic effect may be one of the important reasons to boost the oxygen and hydrogen evolution performances of the hybrid. Based on experimental data, the high electrocatalytic performance was inferred to be related to the unique structure of ZIF-67, tuning the ability of Co3(PO4)2 and synergism between ZIF-67 and Co3(PO4)2. The preparation strategy reported herein can be extended for the rational design and synthesis of cheap, active, and long-lasting bifunctional electrocatalysts for OWS and other renewable energy devices.

20.
Front Chem ; 9: 700380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386479

RESUMEN

Modulating the structure of a photocatalyst at the molecular level can improve the photocatalytic efficiency and provides a guide for the synthesis of highly qualified photocatalysts. In this study, TiO2 was modified by various organic compounds to form different TiO2-based hybrid photocatalysts. 1,10-Phenanthroline (Phen) is an organic material with delocalized π-conjugated systems. It was used to modify TiO2 to form the hybrid photocatalyst Phen/TiO2. Furthermore, 1,10-phenanthrolin-5-amine (Phen-NH2) and 1,10-phenanthroline-5-nitro (Phen-NO2) were also used to modify TiO2 to form NH2-Phen/TiO2 and NO2-Phen/TiO2, respectively. The samples of TiO2, Phen/TiO2, NO2-Phen/TiO2, and NH2-Phen/TiO2 were carefully characterized, and their photocatalytic performance was compared. The results indicated that the photocatalytic efficiency followed the order of NH2-Phen/TiO2 > NO2-Phen/TiO2 > Phen/TiO2 > TiO2. It could be found that modifying TiO2 with different organic compounds containing delocalized π-conjugated systems could enhance the photocatalytic ability; furthermore, the level of this enhancement could be modulated by different delocalized π-conjugated systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...