RESUMEN
DNA methylation plays multiple regulatory roles in crop development. However, the relationships of methylation polymorphisms with genetic polymorphisms, gene expression, and phenotypic variation in natural crop populations remain largely unknown. Here, we surveyed high-quality methylomes, transcriptomes, and genomes obtained from the 20-days-post-anthesis (DPA) cotton fibers of 207 accessions and extended the classical framework of population genetics to epigenetics. Over 287 million single methylation polymorphisms (SMPs) were identified, 100 times more than the number of single nucleotide polymorphisms (SNPs). These SMPs were significantly enriched in intragenic regions while depleted in transposable elements. Association analysis further identified a total of 5,426,782 cis-methylation quantitative trait loci (cis-meQTLs), 5078 cis-expression quantitative trait methylation (cis-eQTMs), and 9157 expression quantitative trait loci (eQTLs). Notably, 36.39% of cis-eQTM genes were not associated with genetic variation, indicating that a large number of SMPs associated with gene expression variation are independent of SNPs. In addition, out of the 1715 epigenetic loci associated with yield and fiber quality traits, only 36 (2.10%) were shared with genome-wide association study (GWAS) loci. The construction of multi-omics regulatory networks revealed 43 cis-eQTM genes potentially involved in fiber development, which cannot be identified by GWAS alone. Among these genes, the role of one encoding CBL-interacting protein kinase 10 in fiber length regulation was successfully validated through gene editing. Taken together, our findings prove that DNA methylation data can serve as an additional resource for breeding purposes and can offer opportunities to enhance and expedite the crop improvement process.
RESUMEN
Numerous deep-learning models have been developed using task-specific data, but they ignore the inherent connections among different tasks. By jointly learning a wide range of segmentation tasks, we prove that a general medical image segmentation model can improve segmentation performance for computerized tomography (CT) volumes. The proposed general CT image segmentation (gCIS) model utilizes a common transformer-based encoder for all tasks and incorporates automatic pathway modules for task prompt-based decoding. It is trained on one of the largest datasets, comprising 36,419 CT scans and 83 tasks. gCIS can automatically perform various segmentation tasks using automatic pathway modules of decoding networks through text prompt inputs, achieving an average Dice coefficient of 82.84%. Furthermore, the proposed automatic pathway routing mechanism allows for parameter pruning of the network during deployment, and gCIS can also be quickly adapted to unseen tasks with minimal training samples while maintaining great performance.
RESUMEN
OBJECTIVES: This study explored the expression and diagnostic value of differentially expressed miR-3591-5p in congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH). METHODS: A total of 110 CHD patients were divided into four groups based on their mean pulmonary artery pressure (PAPm). The plasma miR-3591-5p expression was determined by reverse transcription polymerase chain reaction. The correlation between the miR-3591-5p expression and various clinical indices, as well as its diagnostic value for CHD-PAH patients, were analyzed. RESULTS: The plasma levels of miR-3591-5p were significantly higher in the patients in the no PAH group, mild PAH group, and moderate to severe PAH group than in the control group, and they were significantly higher in the moderate to severe PAH group than in the no PAH group. Correlation analysis revealed that the miR-3591-5p expression level was significantly positively correlated with various clinical indicators, including the PAPm, pulmonary artery systolic pressure, brain natriuretic peptide, pulmonary vascular resistance, red blood cell distribution width, uric acid, Na + , systolic blood pressure, left atrial internal dimension, left ventricular end-diastolic dimension, and left ventricular end-systolic dimension. Univariate and multivariate regression analyses identified the plasma miR-3591-5p level as an independent risk factor for CHD-PAH. Receiver operating characteristic curve analysis demonstrated that the plasma miR-3591-5p level had a moderate diagnostic value for CHD-PAH, which was further improved when combined with a B-type natriuretic peptide. CONCLUSION: This study identified the expression profiles of differentially expressed plasma miRNAs in patients with CHD-PAH, focusing on the upregulation of miR-3591-5p. Bioinformatics analysis suggested that miR-3591-5p is involved in the pathogenesis of CHD-PAH and may serve as a circulating biomarker that may have diagnostic and prognostic value in CHD-PAH.
RESUMEN
Stylosanthes is an important forage legume in tropical areas with strong resistance to aluminum (Al) toxicity, though knowledge of mechanisms underlying this resistance remains fragmentary. We found that border-like cells (BLCs) were constitutively produced surrounding the root tips of all 54 examined Stylosanthes guianensis genotypes, but not the Stylosanthes viscose genotype TF0140. In genotypic comparisons under Al conditions, the S. guianensis genotype RY#2 retained significantly more Al in BLCs and thereby showed higher relative root growth than TF0140. Formation of BLCs accompanied changes in cell wall pectin epitopes and differential expression of genes involved in pectin metabolism, including a polygalacturonase (SgPG1). The expression pattern of SgPG1 was consistent with the formation of BLCs in both RY#2 and TF0140. SgPG1 was localized in cell walls and exhibited high activities mediating demethyl-esterified homogalacturonan degradation. Overexpressing SgPG1 changed cell wall pectin epitopes, enhanced BLCs production, and Al resistance in both Arabidopsis and Stylosanthes hairy roots. Furthermore, combining protein-DNA binding assays in vitro and in vivo, a bHLH transcription factor SgbHLH19 was demonstrated to be the upstream regulator of SgPG1. Our study demonstrates that S. guianensis Al resistance mainly relies on BLCs, whose formation involves cell wall pectin epitope modification by SgPG1.
RESUMEN
The utilization of fast-growing, economically valuable woody plants with strong stress resistance, such as poplar and willow, to revegetate severely metal-contaminated mine tailings not only offers a productive and profitable use of abandoned polluted soil resources but also facilitates the phytoremediation of these polluted soils. This study examines the diversity and functional roles of endophytic fungi naturally colonizing the roots of an artificially established Populus yunnanensis forest and the naturally reclaimed pioneer species Coriaria sinica on an abandoned tailing dam in southwest China. Culture-independent analyses revealed that the root systems of both plant species were abundantly colonized by arbuscular mycorrhizal fungi and endophytic fungi, forming rich and diverse endophytic fungal communities predominantly represented by the genera Ilyonectria, Tetracladium, Auricularia, and unclassified members of Helotiales. However, the composition of root endophytic fungal communities differed significantly between the two plant species. Using a culture-dependent approach, a total of 192 culturable endophytic fungal strains were isolated from the roots. The dominant genera included Cadophora, Cladosporium, Cyphellophora, and Paraphoma, most of which were previously identified as dark septate endophytes (DSE). Six representative DSE strains were selected for further study, and significant cadmium tolerance and various plant growth-promoting traits were observed, including the solubilization of insoluble inorganic and organic phosphorus, indole-3-acetic acid (IAA) production, and siderophore synthesis. In greenhouse experiments, inoculating two DSE strains mitigated the inhibitory effects of metal-polluted tailing soil on the growth of P. yunnanensis. This was achieved by reducing heavy metal uptake in roots and limiting metal translocation to the above-ground tissues, thereby promoting plant growth and adaptability. Our findings suggest that as plants reclaim metal-polluted tailings, root-associated endophytic fungal communities also undergo natural succession, playing a critical role in enhancing the host plant's tolerance to stress. Therefore, these restored root-associated fungi, particularly DSE, are essential functional components of the root systems in plants used for tailing reclamation.
RESUMEN
Accurate detection of asphalt pavement distress is crucial for road maintenance and traffic safety. However, traditional convolutional neural networks usually struggle with this task due to the varied distress patterns and complex background in the images. To enhance the accuracy of asphalt pavement distress identification across various scenarios, this paper introduces an improved model named SMG-YOLOv8, based on the YOLOv8s framework. This model integrates the space-to-depth module and the multi-scale convolutional attention mechanism, while optimizing the backbone's C2f structure with a more efficient G-GhostC2f structure. Experimental results demonstrate that SMG-YOLOv8 outperforms the YOLOv8s baseline model, achieving Pmacro and mAP50 scores of 81.1% and 79.4% respectively, marking an increase of 8.2% and 12.5% over the baseline. Furthermore, SMG-YOLOv8 exhibits clear advantages in identifying various types of pavement distresses, including longitudinal cracks, transverse cracks, mesh cracks, and potholes, when compared to YOLOv5n, YOLOv5s, YOLOv6s, YOLOv8n, and SSD models. This enhancement optimizes the network structure, reducing the number of parameters while maintaining excellent detection performance. In real-world scenarios, the SMG-YOLOv8 model, when applied to image data collected from projects, achieves a Pmacro of 80.5% and an Rmacro of 86.2%. This result demonstrates its excellent generalization capability and practicality. The model provides significant technical support for the intelligent detection of pavement distress.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is currently a major public health hazard.Yangyin Tongnao Granules (YYTN), a traditional Chinese medicinal prescription, exerts potential therapeutic effects on subsequent cerebral ischemia-reperfusion injury (CIRI) after ischemic stroke. However, further studies are required to comprehend the underlying mechanism of YYTN for treating CIRI and the associated spectrum-effect mechanisms. AIM OF THE STUDY: To investigate the coordinated correlation between the fingerprint and the pharmacodynamic indexes of the effective components (total flavonoids, total saponins, total alkaloids, and total phenolic acids) in YYTN for treating CIRI in rats. METHODS: The fingerprints of five specific components (ligustrazine, puerarin, ferulic acid, calycosin, and formononetin) of YYTN in rats with middle cerebral artery occlusion (MCAO) were established using high-performance liquid chromatography (HPLC), and their peak areas were quantified in plasma samples. The pharmacodynamic indexes of tumor necrosis factor-alpha (TNF-α), cytochrome c (Cyt-C), and total superoxide dismutase (T-SOD) were integrated using the Criteria Importance Through Intercriteria Correlation (CRITIC) method to create a comprehensive evaluation index. Spectrum-effect correlation was analyzed by performing gray relation analysis (GRA), correlation analysis (CA), and partial least squares regression (PLSR). The Borda method was then applied to integrate the obtained results. RESULTS: In MCAO rats, the effective components of YYTN reduced TNF-α and Cyt-C and increased T-SOD, which indicates their anti-inflammatory, antiapoptotic, and antioxidant effects. Spectrum-effect CA revealed certain associations between the chromatographic peaks of the five main components and the comprehensive pharmacodynamic evaluation index. Of these components, formononetin displayed the highest correlation, whereas ferulic acid exhibited the lowest correlation. All components showed a positive correlation. Using the Borda method, the components were ranked as follows based on correlation: formononetin > calycosin > ligustrazine > puerarin > ferulic acid. CONCLUSIONS: The effective components of YYTN exhibited synergistic effects in the treatment of MCAO rats, which could potentially be attributed to their multitarget and multipathway mechanisms. The Borda method-based spectrum-effect correlation analysis provides a coordinated approach to investigate the relationship between fingerprint and pharmacodynamics of traditional Chinese medicine (TCM).
RESUMEN
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
RESUMEN
Intermediate wheatgrass (IWG) is a promising perennial grain explored for mainstream food applications. This study investigated the effects of different germination temperatures (10, 15, and 20 °C) and durations (2, 4, and 6 days) on IWG's volatile and fatty acid (FA) profiles. A method using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was optimized through response surface design to extract the volatile compounds, achieving ideal extraction conditions at 60 °C for 55 min. Multiple headspace extraction (MHE) was used for volatile compound quantification. Fifty-eight compounds were identified and quantified in IWG flour, mainly alcohols, aldehydes, hydrocarbons, terpenes, esters, organic acids, and ketones. The main FAs found were linoleic acid (C18:2), oleic acid (C18:1), palmitic acid (C16:0), and linolenic acid (C18:3). Principal component analysis showed a direct correlation between volatile oxidation products and FA composition. Germination at 15 °C for 6 days led to a reduced presence of aldehydes and alcohols such as nonanal and 1-pentanol. Therefore, optimized germination was successful in reducing the presence of potential off-odor compounds. This study provides valuable insights into the effects of germination on IWG flour, showing a way for its broader use in food applications.
Asunto(s)
Ácidos Grasos , Cromatografía de Gases y Espectrometría de Masas , Germinación , Semillas , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Germinación/efectos de los fármacos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Poaceae/química , TemperaturaRESUMEN
Direct visualization of the states originating from electron-electron interactions is of great importance for engineering the surface and interfacial properties of graphene-based quantum materials. For instance, the rotational symmetry breaking or nematic phase inferred from spectroscopic imaging has confirmed the existence of correlated states in a wide range of moiré materials. Here, we study the atomic-scale spatial distributions and symmetry of wave functions in gate-tunable twisted double bilayer graphene by employing scanning tunneling microscopy/spectroscopy and continuum model calculations. A series of spectroscopic imaging analyses are used to identify dominant symmetry breaking of the emergent states. Interestingly, in non-integer hole fillings, a completely new localized electronic state with rotational symmetry breaking is observed on the left side of the valence flat band. The degree of anisotropy is found to increase from the conduction flat band through the valence flat band to the new state. Our results provide an essential microscopic insight into the flat band and its adjacent state for a full understanding of their electric field response in twisted graphene systems.
RESUMEN
Aldosterone-producing adenoma is a subtype of primary aldosteronism. Recent advancements in multi-omics research have led to significant progress in understanding primary aldosteronism at the genetic level. Among the various genes associated with the development of aldosterone-producing adenomas, the KCNJ5 (potassium inwardly rectifying channel, subfamily J, member 5) gene has received considerable attention due to its prevalence as the most common somatic mutation gene in primary aldosteronism. This paper aims to integrate the existing evidence on the involvement of KCNJ5 gene in the pathogenesis of aldosterone-producing adenomas, to enhance the understanding of the underlying mechanisms of aldosterone-producing adenomas from the perspective of genetics, and to provide novel insights for the clinical diagnosis and treatment of aldosterone-producing adenomas.
Asunto(s)
Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Aldosterona , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Hiperaldosteronismo , Humanos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Aldosterona/metabolismo , Aldosterona/biosíntesis , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Adenoma/genética , Adenoma/metabolismo , MutaciónRESUMEN
Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase. Remarkably, taking a terbium MOF as a typical model, the initial rate of the resulting catalyst was found to be 21.1 and 4.3 times higher than that of Hh-MOF and hG-MOF, respectively. The exceptional catalytic properties of HhG-MOF can be attributed to its strong affinity for substrates. Based on the inhibitory effect of thiocholine (TCh) produced by the reaction between acetylcholinesterase (AChE) and acetylthiocholine, a facile, cost-effective, and sensitive colorimetric method was designed based on HhG-MOF for the measurement of AChE, a marker of several neurological diseases, and its inhibitor. This allowed a linear response in the 0.002 to 1 U L-1 range, with a detection limit of 0.001 U L-1. Furthermore, the prepared sensor demonstrated great selectivity and performed well in real blood samples, suggesting that it holds promise for applications in the clinical field.
Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Hemina , Histidina , Estructuras Metalorgánicas , Hemina/química , Estructuras Metalorgánicas/química , Técnicas Biosensibles/métodos , Histidina/química , ADN Catalítico/química , ADN Catalítico/metabolismo , Colorimetría , Humanos , Catálisis , Materiales Biomiméticos/químicaRESUMEN
Melanin naturally exists in organisms and is synthetized by tyrosinase (TYR); however, its over-production may lead to aberrant pigmentation and skin conditions. Loquat (Eriobotrya japonica (Thunb.) Lindl.) flowers contain a variety of bioactive compounds, while studies on their suppressive capabilities against melanin synthesis are limited. Loquat flower isolate product (LFP) was obtained by ethanol extraction and resin purification, and its inhibitory efficiency against TYR activity was investigated by enzyme kinetics and multiple spectroscopy analyses. In addition, the impact of LFP on melanin synthesis-related proteins' expression in mouse melanoma B16 cells was analyzed using Western blotting. HPLC-MS/MS analysis indicated that LFP was composed of 137 compounds, of which 12 compounds, including flavonoids (quercetin, isorhamnoin, p-coumaric acid, etc.) and cinnamic acid and its derivatives, as well as benzene and its derivatives, might have TYR inhibitory activities. LFP inhibited TYR activity in a concentration-dependent manner with its IC50 value being 2.8 mg/mL. The inhibition was an anti-competitive one through altering the enzyme's conformation rather than chelating copper ions at the active center. LFP reduced the expression of TYR, tyrosinase-related protein (TRP) 1, and TRP2 in melanoma B16 cells, hence inhibiting the synthesis of melanin. The research suggested that LFP had the potential to reduce the risks of hyperpigmentation caused by tyrosinase and provided a foundation for the utilization of loquat flower as a natural resource in the development of beauty and aging-related functional products.
Asunto(s)
Eriobotrya , Flores , Melaninas , Melanoma Experimental , Monofenol Monooxigenasa , Extractos Vegetales , Animales , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Ratones , Melaninas/biosíntesis , Melaninas/metabolismo , Flores/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Eriobotrya/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/químicaRESUMEN
PURPOSE: To summarize the ultrasonographic features of head and neck Castleman disease (CD), and to clarify its diagnostic key points. METHODS: Seven patients with head and neck CD confirmed by histopathology were collected from Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The clinical features and ultrasound findings of the patients were evaluated. RESULTS: Of the 7 patients (1 male and 6 females), the mean age at diagnosis was 31.4 years (7-60 years). All the cases were hyaline vascular type. On ultrasound, 3 lesions (42.9%) were located in the parotid gland, 4 lesions(57.1%) in the neck. All the lesions presented as a solitary, well-defined and solid mass without calcification. The echogenicity was markedly hypoechoic in 1 case(14.3%) and hypoechoic in 6 cases (85.7%). Of the 7 CD cases, 4 cases (57.1%) were heterogeneous masses with linear echogenic septa. All lesions had mixed pattern in vascularity on color Doppler sonography. CONCLUSIONS: Most CDs in the head and neck represent as a markedly hypoechoic or hypoechoic lesion with mixed pattern in vascularity. The neoplasm may be characterized by the presence of linear echogenic septa within the mass.
Asunto(s)
Enfermedad de Castleman , Cuello , Ultrasonografía , Humanos , Enfermedad de Castleman/diagnóstico por imagen , Enfermedad de Castleman/patología , Masculino , Cuello/diagnóstico por imagen , Adulto , Femenino , Ultrasonografía/métodos , Persona de Mediana Edad , Cabeza/diagnóstico por imagen , Niño , Adolescente , Ultrasonografía Doppler en Color/métodos , Adulto Joven , Glándula Parótida/diagnóstico por imagen , Glándula Parótida/patologíaRESUMEN
BACKGROUND: This study aimed to determine the postoperative intestinal functioning, quality of life (QoL), and psychological well-being of patients treated either with organ-preserving surgery (OPS) or organ-resection surgery (ORS) for high-grade intraepithelial neoplasia (HIN) or T1 colorectal cancer (CRC). METHODS: This cross-sectional study was conducted at a single tertiary care center. In total, 175 eligible individuals with T1 CRC or HIN were divided into the OPS (n = 103) or ORS (n = 72) group based on whether the relevant segment of the intestine was preserved or resected. Intestinal function was evaluated using low anterior resection syndrome (LARS) scores. QoL was evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ)-C30 and EORTC-QLQ-CR29. Psychological status was evaluated using the Fear of Progression Questionnaire-Short Form and the Self-rating Anxiety and Depression scales. Propensity score matching (PSM) was used to minimize the influence of potential confounders. RESULTS: Overall, 130 of 175 patients (74.29%) responded to the questionnaires; 56 and 74 were in the ORS and OPS groups, respectively. Thirty-five patient pairs were successfully matched through PSM. The mild and severe LARS rates were significantly higher in the ORS group than in the OPS group (P < 0.001). The EORTC-QLQ-C30 and EORTC-QLQ-CR29 scores revealed significantly better physical, role, and emotional functioning and an overall improved state of health (with multiple reduced symptom scores) in the OPS group than in the ORS group (P < 0.05). Significantly more patients were depressed in the ORS group than in the OPS group (P = 0.034), whereas anxiety or fear of disease progression did not differ significantly between the groups. CONCLUSIONS: OPS for the treatment of HIN or T1 CRC was found to be more advantageous for patients in terms of improved intestinal function, QoL, and psychological status than was ORS.
Asunto(s)
Neoplasias Colorrectales , Salud Mental , Tratamientos Conservadores del Órgano , Calidad de Vida , Centros de Atención Terciaria , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/psicología , Tratamientos Conservadores del Órgano/métodos , Anciano , China , Carcinoma in Situ/cirugía , Carcinoma in Situ/psicología , Adulto , Encuestas y Cuestionarios , Pueblos del Este de AsiaRESUMEN
Despite significant progress in therapy, there remains a lack of substantial evidence regarding the molecular factors that lead to renal fibrosis. Neuraminidase 4 (NEU4), an enzyme that removes sialic acids from glycoconjugates, has an unclear role in chronic progressive fibrosis. Here, this study finds that NEU4 expression is markedly upregulated in mouse fibrotic kidneys induced by folic acid or unilateral ureter obstruction, and this elevation is observed in patients with renal fibrosis. NEU4 knockdown specifically in the kidney attenuates the epithelial-to-mesenchymal transition, reduces the production of pro-fibrotic cytokines, and decreases cellular senescence in male mice. Conversely, NEU4 overexpression exacerbates the progression of renal fibrosis. Mechanistically, NEU4254-388aa interacts with Yes-associated protein (YAP) at WW2 domain (231-263aa), promoting its nucleus translocation and activation of target genes, thereby contributing to renal fibrosis. 3,5,6,7,8,3',4'-Heptamethoxyflavone, a natural compound, is identified as a novel NEU4 inhibitor, effectively protecting mice from renal fibrosis in a NEU4-dependent manner. Collectively, the findings suggest that NEU4 may represent a promising therapeutic target for kidney fibrosis.
Asunto(s)
Modelos Animales de Enfermedad , Fibrosis , Neuraminidasa , Animales , Neuraminidasa/metabolismo , Neuraminidasa/genética , Ratones , Fibrosis/metabolismo , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/tratamiento farmacológico , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Ácido Fólico/metabolismoRESUMEN
Flatfoot is a common foot deformity, causing foot pain, osteoarthritis of the midfoot, and even knee and hip dysfunction. The elastic modulus of foot soft tissues and its association with gait biomechanics still remain unclear. For this study, we recruited 20 young individuals with flatfoot and 22 age-matched individuals with normal foot arches. The elastic modulus of foot soft tissues (posterior tibial tendon, flexor digitorum brevis, plantar fascia, heel fat pad) was obtained via ultrasound elastography. Gait data were acquired using an optical motion capture system. The association between elastic modulus and gait data was analyzed via correlation analysis. The elastic modulus of the plantar fascia (PF) in individuals with flatfoot was higher than that in individuals with normal foot arches. There was no significant difference in the elastic modulus of the posterior tibial tendon (PTT), the flexor digitorum brevis (FDB), or the heel fat pad (HFD), or the thickness of the PF, PTT, FDB, and HFD. Individuals with flatfoot showed greater motion of the hip and pelvis in the coronal plane, longer double-support phase time, and greater maximum hip adduction moment during walking. The elastic modulus of the PF in individuals with flatfoot was positively correlated with the maximum hip extension angle (r = 0.352, p = 0.033) and the maximum hip adduction moment (r = 0.429, p = 0.039). The plantar fascia is an important plantar structure in flatfoot. The alteration of the plantar fascia's elastic modulus is likely a significant contributing factor to gait abnormalities in people with flatfoot. More attention should be given to the plantar fascia in the young population with flatfoot.
RESUMEN
Gastrointestinal (GI) afflictions are prevalent among the feline population, wherein the intricacies of the gut microbiome exert a profound influence on their overall health. Alterations within this microbial consortium can precipitate a cascade of physiological changes, notably in immune function and antioxidant capacity. This research investigated the impact of Bifidobacterium lactis (B. lactis) and Lactobacillus plantarum (L. plantarum) on cats' GI health, exploring the effects of probiotic supplementation on the intestinal ecosystem using 16S rRNA gene sequencing. The findings demonstrated a significant improvement in gut barrier function by reducing plasma concentrations of D-lactate (D-LA) by 30.38% and diamine oxidase (DAO) by 22.68%, while increasing the population of beneficial bacteria such as Lactobacillus. There was a notable 25% increase in immunoglobulin A (IgA) levels, evidenced by increases of 19.13% in catalase (CAT), 23.94% in superoxide dismutase (SOD), and 21.81% in glutathione peroxidase (GSH-Px). Further analysis revealed positive correlations between Lactobacillus abundance and IgA, CAT, and total antioxidant capacity (T-AOC) levels. These correlations indicate that B. lactis and L. plantarum enhance feline immune and antioxidant functions by increasing the abundance of beneficial Lactobacillus in the GI tract. These findings provide a foundation for probiotic interventions aimed at enhancing health and disease resistance in feline populations.