Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607252

RESUMEN

Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-ß-primeveroside and linalyl-ß-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-ß-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-ß-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-ß-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.

2.
Food Chem X ; 21: 101143, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312489

RESUMEN

Fermentation is a vital process occurred under the premise of rolling affecting black tea quality. Theoretically, re-rolling during fermentation will remodel the biochemical conditions of tea leaves, and thus influence black tea quality. Herein, we studied the effect of re-rolling on black tea taste and liquor color. Sensory evaluation showed that re-rolling significantly weakened the astringency taste and improved the redness and luminance of liquor. With re-rolling, the color attributes of a* and L* and the contents of theaflavins and thearubigins were significantly improved. Metabolomics analysis showed that the contents of 110 non-volatile compounds were significantly different among black teas with different rolling treatments. In summary, re-rolling accelerated the oxidation of polyphenols into pigments, the hydrolysis of proteins into amino acids, and the metabolism of alkaloids, organic acids, glycosidically-bound volatiles, and lipids during the fermentation period. Our study provided a novel and simple way to improve black tea quality.

3.
Foods ; 12(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37835355

RESUMEN

Aroma is a vital factor influencing tea quality and value. It is a challenge to produce a kind of black tea with a floral/fruity aroma, good taste, and without a green/grassy odor simultaneously using small- and medium-leaf tea species. In this study, the effect of re-rolling treatment on the aroma quality of small-leaf Congou black tea was investigated using the methods of the equivalent quantification of aroma and gas chromatography-mass spectrometry (GC-MS). Sensory evaluation showed that re-rolling treatment improved the aroma quality of Congou black tea by conferring upon it floral and fruity scents. In total, 179 volatile compounds were identified using GC-MS, of which 97 volatiles showed statistical differences (Tukey s-b(K), p < 0.05). Re-rolling treatment significantly reduced the levels of alcoholic fatty acid-derived volatiles (FADVs) and volatile terpenoid (VTs), but increased the levels of aldehydic and ester FADVs, most amino acid-derived volatiles (AADVs), carotenoid-derived volatiles (CDVs), alkene VTs, and some other important volatile compounds. Based on the odor characteristics and fold changes of differential volatile compounds, hexanoic acid, hexyl formate, cis-3-hexenyl hexanoate, (Z)-3-hexenyl benzoate, hexyl hexanoate, phenylacetaldehyde, benzyl alcohol, ß-ionone, α-ionone, dihydroactinidiolide, ipsenone, ß-farnesene, ß-octalactone, melonal, etc., were considered as the potential key odorants responsible for the floral and fruity scents of re-rolled black tea. In summary, this study provides a novel and simple processing technology to improve the aroma quality of small-leaf Congou black tea, and the results are beneficial to enriching tea aroma chemistry.

4.
Metabolites ; 13(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512491

RESUMEN

The flower is the reproductive organ of the tea plant, while it is also processed into different kinds of products and thus of great significance to be utilized. In this study, the non-volatile secondary metabolites in the internal and external petals of white, white and pink, and pink tea flowers were studied using a widely targeted metabolomics method with ultra-high liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A total of 429 metabolites were identified, including 195 flavonoids, 121 phenolic acids, 40 alkaloids, 29 lignans and coumarins, 19 tannins, 17 terpenoids, and 8 other metabolites. The metabolites in the internal and external petals of different colored flowers showed great changes in flavonoids. Most flavonoids and all tannins in the internal petals were higher compared with the external petals. Some phenolic acids were more accumulated in the external petals, while others showed opposite trends. The pink tea flower contained more flavonoids, alkaloids, lignans, coumarins, terpenoids, and tannins compared with white tea flowers. In addition, cyanidin-3-O-glucoside was more accumulated in the external petals of the pink flower, indicating that anthocyanin may be the main reason for the color difference between the pink and white tea flower. The enriched metabolic pathways of different colored flowers were involved in flavonoid biosynthesis, glycine, serine and threonine metabolism, glycerophospholipid metabolism, and phenylpropanoid biosynthesis. The findings of this study broaden the current understanding of non-volatile compound changes in tea plants. It is also helpful to lay a theoretical foundation for integrated applications of tea flowers.

5.
Food Chem ; 403: 134263, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166927

RESUMEN

To comprehensively analyse flavour substance formation in Congou black tea, dynamic changes in non-volatile and volatile compositions and enzymatic activity were analysed. In total, 107 non-volatile and 222 volatile compositions were identified via ultra-high performance liquid chromatography coupled with quadrupole-exactive mass spectrometry (UHPLC-Q-Exactive/MS) and stir bar sorptive extraction-gas chromatography-mass spectrometry (SBSE-GC-MS), and eight metabolic pathways were explored during tea processing. Significant variations in metabolites were observed during processing (P < 0.05), especially in the fermentation stage, including high accumulation of taste and colour substances due to decreased flavonoid synthase activity and elevated oxidase activity. Correlation analysis clarified that the mutual transformation between non-volatile and volatile substances occurs in certain types of processing, including amino acids, amino acid-derived volatiles (AADVs), glycosidically bound volatiles (GBVs), and volatile terpenoids (VTs). Our study provides a detailed overview of the dynamic changes of in flavour substrates and key enzyme activities during Congou black tea processing.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Té/química , Gusto , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química , Aromatizantes/análisis , Aminoácidos/metabolismo , Redes y Vías Metabólicas
6.
Foods ; 12(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38231869

RESUMEN

Tea aroma greatly varies with the production date. This study investigated the aroma differences among black teas processed on different dates (March 23rd, April 8th, April 15th, April 27th, and May 7th) in the spring. A sensory evaluation showed that the black tea produced on April 15th had a strong and lasting sweet aroma and the highest score of 93.5. In total, 71 volatile compounds were identified, and alcohols were the predominant category, accounting for 60.98%. From March 23rd to May 7th, the total content of volatile compounds showed a parabolic change trend and reached its maximum on April 15th (715.27 µg/L); the flavor index first peaked on April 8th (23.25) and then gradually decreased. A multivariate statistical analysis showed that 39 volatile compounds were important, differential aroma components. An odor activity value (OAV) analysis showed that the predominant odorants were ß-ionone, ß-damascenone, linalool, (E)-ß-ocimene, and geraniol, all with values larger than 100. The total OAVs of undesirable odorants decreased and reached their minimum (70.4) on April 27th, while the total OAVs of pleasant odorants and the ratio of pleasant/undesirable odorants showed inverse changes and reached their maximum (2182.1 and 31.0, respectively) on April 27th. Based on the significance of differences and OAVs, linalool, (E)-ß-ocimene, geraniol, and (E,E)-2,4-nonadienal were considered as the key differential odorants. Combined with the sensory evaluation and the differences in aroma components, it was proposed that black teas produced around April 15th in the Hunan district are more likely to have a strong and lasting sweet aroma. This study will provide scientific guidance for the production of black tea in the Hunan district, China.

7.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553850

RESUMEN

Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-ß-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.

8.
Food Chem ; 374: 131640, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34839968

RESUMEN

The present study aimed to systematically investigate black tea aroma formation during the fermentation period. In total, 158 volatile compounds were identified. Of these, most amino acid-derived volatiles (AADVs) and carotenoid-derived volatiles (CDVs) showed significant increases, while fatty acid-derived volatiles (FADVs) and volatile terpenoids (VTs) displayed diverse changes during the fermentation period. During this time, fatty acids, amino acids, carotenoids, and glycosidically bound volatiles (GBVs, especially primeverosides) were found to degrade to form aroma components. Further, equivalent quantification of aroma showed that the intensity of green scent was notably decreased, while the intensities of sweet and floral/fruity scents were greatly increased and gradually dominated the aroma of tea leaves. AADVs and CDVs were shown to make greater contributions to the formation of sweet and floral/fruity scents than VTs. Our study provides a detailed characterization of the formation of sweet and floral/fruity aromas in black tea during the fermentation period.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , , Compuestos Orgánicos Volátiles/análisis
9.
Molecules ; 25(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371407

RESUMEN

The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei. The sensory evaluation experiment carried out by gas chromatography-olfactometry/mass spectrometry (GC-O/MS) revealed 44 aroma-active compounds, of which 25 compounds were identified, including 9 alcohols, 6 aldehydes, 5 ketones, and 5 other compounds. These odorants mostly presented green, fresh, floral, fruity, or sweet odors. Multivariate analyses of chemical characterization and sensory evaluation results showed that high proportions of alcohols and aldehydes form the basis of green and fresh aroma characteristic of white teas, and phenylethyl alcohol, γ-Nonalactone, trans-ß-ionone, trans-linalool oxide (furanoid), α-ionone, and cis-3-hexenyl butyrate were considered as the key odorants accounting for the different aroma characteristics of the three subtypes of white tea. The results will contribute to in-depth understand chemical and sensory markers associated with different subtypes of white tea, and provide a solid foundation for tea aroma quality control and improvement.


Asunto(s)
Aromatizantes/química , Odorantes/análisis , Té/química , Monoterpenos Acíclicos/química , Aldehídos/química , Ciclohexanoles/química , Frutas/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Norisoprenoides/química , Microextracción en Fase Sólida/métodos , Compuestos de Tritilo/química , Compuestos Orgánicos Volátiles/química
10.
Food Chem ; 332: 127412, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32623128

RESUMEN

In this study, metabolomics and proteomics were employed to investigate the change mechanism of nonvolatile compounds during white tea processing. A total of 99 nonvolatile compounds were identified, among which the contents of 13 free amino acids, caffeine, theaflavins, 7 nucleosides and nucleotides, and 5 flavone glycosides increased significantly, while the contents of theanine, catechins, theasinesins, 3 proanthocyanidins, and phenolic acids decreased significantly during the withering period. The results of proteomics indicated that the degradation of proteins accounted for the increase in free amino acid levels; the weakened biosynthesis, in addition to oxidation, also contributed to the decrease in flavonoid levels; the degradation of ribonucleic acids contributed to the increase in nucleoside and nucleotide levels during the withering period. In addition, the drying process was found to slightly promote the formation of white tea taste. Our study provides a novel characterization of white tea taste formation during processing.


Asunto(s)
Camellia sinensis/química , Metabolómica/métodos , Té/química , Alcaloides/análisis , Alcaloides/metabolismo , Camellia sinensis/metabolismo , Catecoles/análisis , Catecoles/metabolismo , Flavonoides/análisis , Flavonoides/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Proteómica , Té/metabolismo
11.
Molecules ; 25(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182963

RESUMEN

Functional and nutritional compounds are increased during foxtail millet germination while bad smell is produced due to the fatty acid oxidation. To eliminate the unpleasant aroma, the origins of the volatiles must be known. A comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry showed forty-nine volatiles containing 8 ketones, 10 aldehydes, 20 alkanes, 4 alcohols, 5 alkenes, and 2 furans were tentatively identified, and they increased during the germination of the foxtail millet. To identify the origin of some volatiles, model experiments by adding 6 fatty acids to the crude enzymes of the foxtail millet was designed, and 17 volatiles could be detected. The saturated fatty acids (palmitic acid and stearic acid) had no contributions to the formation of the volatiles, whereas the unsaturated fatty acid played important roles in the formation of volatiles. Among the unsaturated fatty acids, palmitoleic acid and linoleic acid produced most aldehydes, alcohols, and ketones, while linolenic acid produced the most alkanes and alkenes. This study will be helpful for controlling the smell of germinated seeds from the raw material selection.


Asunto(s)
Ácidos Grasos Volátiles/aislamiento & purificación , Ácidos Grasos/química , Germinación , Setaria (Planta)/química , Ácidos Grasos/aislamiento & purificación , Ácidos Grasos Volátiles/química , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Setaria (Planta)/crecimiento & desarrollo , Olfato
12.
Food Chem ; 274: 915-924, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30373028

RESUMEN

The formation of and dynamic changes in aroma during white tea processing have not previously been systematically investigated. In this study, advanced comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry was employed to investigate the mechanism of white tea aroma formation. A total of 172 volatiles were identified and mainly comprising endogenous volatiles, which displayed diverse change trends during the withering period. In this process, free aroma precursor amino acids and glycosidically bound volatiles (GBVs) were found to contribute to the formation of white tea aroma, with the differential expression of aroma-related key genes accounting for various accumulation of endogenous volatiles and GBVs. In addition, the drying was also shown to play an important role in the formation of white tea aroma. Our study provides the first characterization of white tea aroma formation and establishes a theoretical basis for quality control during white tea processing operations.


Asunto(s)
Camellia sinensis/genética , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis , Aminoácidos/análisis , Camellia sinensis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Regulación de la Expresión Génica de las Plantas
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1017-1018: 221-225, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26990737

RESUMEN

Thin-layer chromatography (TLC) method for the separation and quantitative determination of seven related compounds: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3″Me) and (-)-epigallocatechin- 3-O-(4-O-methyl) gallate (EGCG4″Me) has been developed. The above-mentioned seven compounds have been resolved using polyamide TLC plates using a double-development with methanol followed by acetone/acetic acid (2:1, v/v). In addition, separation of the phenolic acids namely gallic acid, chlorogenic acid, and caffeic acid was achieved using the same solvent system. The applicability of the method was checked by screening of extracts of green, black, oolong, white tea and tea cultivars leaves.


Asunto(s)
Catequina/análogos & derivados , Catequina/aislamiento & purificación , Cromatografía en Capa Delgada/métodos , Nylons/química , Catequina/química , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...