Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Environ Sci Technol ; 58(17): 7653-7661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38635861

RESUMEN

The removal and conversion of nitrate (NO3-) from wastewater has become an important environmental and health topic. The NO3- can be reduced to nontoxic nitrogen (N2) for environmental remediation or ammonia (NH3) for recovery, in which the tailoring of the selectivity is greatly challenging. Here, by construction of the CuOx@TiO2 photocatalyst, the NO3- conversion efficiency is enhanced to ∼100%. Moreover, the precise regulation of selectivity to NH3 (∼100%) or N2 (92.67%) is accomplished by the synergy of cooperative redox reactions. It is identified that the selectivity of the NO3- photoreduction is determined by the combination of different oxidative reactions. The key roles of intermediates and reactive radicals are revealed by comprehensive in situ characterizations, providing direct evidence for the regulated selectivity of the NO3- photoreduction. Different active radicals are produced by the interaction of oxidative reactants and light-generated holes. Specifically, the introduction of CH3CHO as the oxidative reactant results in the generation of formate radicals, which drives selective NO3- reduction into N2 for its remediation. The alkyl radicals, contributed to by the (CH2OH)2 oxidation, facilitate the deep reduction of NO3- to NH3 for its upcycling. This work provides a technological basis for radical-directed NO3- reduction for its purification and resource recovery.


Asunto(s)
Amoníaco , Nitratos , Oxidación-Reducción , Amoníaco/química , Catálisis , Aguas Residuales/química
2.
Microvasc Res ; 154: 104681, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38493885

RESUMEN

BACKGROUND: Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS: ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS: Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION: During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.


Asunto(s)
Barorreflejo , Plaquetas , Barrera Hematoencefálica , Ligando de CD40 , Permeabilidad Capilar , Modelos Animales de Enfermedad , Células Endoteliales , Metaloproteinasa 9 de la Matriz , FN-kappa B , Ratas Sprague-Dawley , Transducción de Señal , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiopatología , Barrera Hematoencefálica/patología , Plaquetas/metabolismo , Masculino , Células Endoteliales/metabolismo , Ligando de CD40/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Ocludina/metabolismo , Línea Celular , Agregación Plaquetaria , Presión Arterial , Ratas
3.
G3 (Bethesda) ; 14(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38263533

RESUMEN

The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated ß-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/ß-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/ß-catenin pathway.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , beta Catenina , Animales , beta Catenina/genética , beta Catenina/metabolismo , Proliferación Celular/genética , Condrocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Vía de Señalización Wnt/genética , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Eur J Pediatr ; 183(3): 1403-1414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170291

RESUMEN

Mendelian disorders of the epigenetic machinery (MDEMs) are caused by genetic mutations, a considerable fraction of which are associated with epigenetic modification. These MDEMs exhibit phenotypic overlap broadly characterized by multiorgan abnormalities. The variant detected in genes associated with epigenetic modification can lead to short stature accompanied with multiple system abnormalities. This study is aimed at presenting and summarizing the diagnostic rate, clinical, and genetic profile of MDEMs-associated short stature. Two hundred and fourteen short-stature patients with multiorgan abnormalities were enrolled. Clinical information and whole exome sequence (WES) were analyzed for these patients. WES identified 33 pathogenic/likely pathogenic variants in 19 epigenetic modulation genes (KMT2A, KMT2D, KDM6A, SETD5, KDM5C, HUWE1, UBE2A, NIPBL, SMC1A, RAD21, CREBBP, CUL4B, BPTF, ANKRD11, CHD7, SRCAP, CTCF, MECP2, UBE3A) in 33 patients (15.4%). Of note, 19 variants had never been reported previously. Furthermore, these 33 variants were associated with 16 different disorders with overlapping clinical features characterized by development delay/intelligence disability (31/33; 93.9%), small hands (14/33; 42.4%), clinodactyly of the 5th finger (14/33; 42.4%), long eyelashes (13/33; 39.4%), and hearing impairment (9/33; 27.3%). Additionally, several associated phenotypes are reported for the first time: clubbing with KMT2A variant, webbed neck with SETD5 variant, retinal detachment with CREBBP variant, sparse lateral eyebrow with HUWE1 variant, and long palpebral fissure with eversion of the lateral third of the low eyelid with SRCAP variant.Conclusions: Our study provided a new conceptual framework for further understanding short stature. Specific clinical findings may indicate that a short-stature patient may have an epigenetic modified gene variant.


Asunto(s)
Anomalías Múltiples , Metiltransferasas , Humanos , Mutación , Genotipo , Fenotipo , Epigénesis Genética , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Cullin/genética
5.
Angew Chem Int Ed Engl ; 63(7): e202317575, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38151473

RESUMEN

Copper (Cu) is evidenced to be effective for constructing advanced catalysts. In particular, Cu2 O is identified to be active for general catalytic reactions. However, conflicting results regarding the true structure-activity correlations between Cu2 O-based active sites and efficiencies are usually reported. The structure of Cu2 O undergoes dynamic evolution rather than remaining stable under working conditions, in which the actual reaction cannot proceed over the prefabricated Cu2 O sites. Therefore, the dynamic construction of Cu2 O active sites can be developed to promote catalytic efficiency and reveal the true structure-activity correlations. Herein, by introducing the redox pairs of Cu2+ and reducing sugar into a photocatalysis system, it is clarified that the Cu2 O sub-nanoclusters (NCs), working as novel active sites, are on-site constructed on the substrate via a photoinduced pseudo-Fehling's route. The realistic interfacial charge separation and transformation capacities are remarkably promoted by the dynamic Cu2 O NCs under the actual catalysis condition, which achieves a milestone efficiency for nitrate-to-ammonia photosynthesis, including the targets of production rate (1.98±0.04 mol gCu -1 h-1 ), conversion ratio (94.2±0.91 %), and selectivity (98.6 %±0.55 %). The current work develops an effective strategy for integrating the active site construction into realistic reactions, providing new opportunities for Cu-based chemistry and catalysis sciences research.

6.
ACS Appl Mater Interfaces ; 16(1): 1492-1501, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153799

RESUMEN

Piezoelectric poly(vinylidene fluoride) (PVDF) and its copolymers have been widely investigated for applications in wearable electric devices and sensing systems, owing to their intrinsic piezoelectricity and superior flexibility. However, their weak piezoelectricity poses major challenges for practical applications. To overcome these challenges, we propose a two-step synthesis approach to fabricate sandwich-structured piezoelectric films (BaTiO3@PDA/PVDF/BaTiO3@PDA) with significantly enhanced ferroelectric and piezoelectric properties. As compared to pristine PVDF films or conventional 0-3 composite films, a maximum polarization (Pmax) of 11.24 µC/cm2, a remanent polarization (Pr) of 5.83 µC/cm2, and an enhanced piezoelectric coefficient (d33 ∼ 14.6 pC/N) were achieved. Simulation and experimental results have demonstrated that the sandwich structure enhances the ability of composite films to withstand higher poling electric fields in comparison with 0-3 composites. The sandwich-structured piezoelectric films are further integrated into a wireless sensor system with a high force sensitivity of 288 mV/N, demonstrating great potential for movement monitoring applications. This facile approach shows great promise for the large-scale production of composite films with remarkable flexibility, ferroelectricity, and piezoelectricity for wearable sensing devices.

7.
Proc Natl Acad Sci U S A ; 120(51): e2312550120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079556

RESUMEN

The combined reductive and oxidative reaction is the essence of a solar-driven photoredox system. Unfortunately, most of these efforts focus on the specific half-reactions, and the key roles of complete photoredox reactions have been overlooked. Taking the nitrate reduction reaction (NO3-RR) as a typical multiple-electrons involved process, the selective reduction of the NO3- into ammonia (NH3) synthesis with high efficiency is still a grand challenge. Herein, a rational oxidative half-reaction is tailored to achieve the selective conversion of NO3- to NH3 on Cu-O-Ti active sites. Through the coupled NO3-RR with glycol oxidation reaction system, a superior NH3 photosynthesis rate of 16.04 ± 0.40 mmol gcat-1 h-1 with NO3- conversion ratio of 100% and almost 100% of NH3 selectivity is reached on Cu-O-Ti bimetallic oxide cluster-anchored TiO2 nanosheets (CuOx@TNS) catalyst. A combination of comprehensive in situ characterizations and theoretical calculations reveals the molecular mechanism of the synergistic interaction between NO3-RR and glycol oxidation pair on CuOx@TNS. The introduction of glycol accelerates the h+ consumption for the formation of alkoxy (•R) radicals to avoid the production of •OH radicals. The construction of Cu-O-Ti sites facilitates the preferential oxidation of glycol with h+ and enhances the production of e- to participate in NO3-RR. The efficiency and selectivity of NO3--to-NH3 synthesis are thus highly promoted on Cu-O-Ti active sites with the accelerated glycol oxidative half-reaction. This work upgrades the conventional half photocatalysis into a complete photoredox system, demonstrating the tremendous potential for the precise regulation of reaction pathway and product selectivity.

8.
Environ Sci Pollut Res Int ; 30(57): 120775-120792, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37945949

RESUMEN

A comprehensive understanding of carbon emission reduction and decoupling in urban agglomerations of the Yellow River Basin (YRB) has significant theoretical and practical value for formulating precise carbon reduction policies and achieving ecological conservation and high-quality development in the region. This study utilized a generalized Divisia index decomposition model to identify the primary driving factors behind carbon emission changes in urban agglomerations of the YRB. Based on this, a model measuring decoupling efforts was constructed to systematically investigate the decoupling relationship between carbon emissions. The research findings indicate that technological progress and output scale are two primary drivers of carbon emission increases in the YRB and its urban agglomerations, whereas technological carbon intensity, output carbon intensity, and energy carbon intensity play key roles in reducing carbon emissions. Except for a few years, the YRB and Jiziwan metropolitan area (JWMA) did not exhibit decoupling effects on carbon emissions. The Shandong Peninsula Urban Agglomeration (SPUA) and Central Plains Urban Agglomeration (CPUA) showed strong decoupling effects from 2016 to 2019. The Guanzhong Plain Urban Agglomeration (GPUA) demonstrated a strong decoupling effect from 2013 to 2019 (except from 2016 to 2017). The Lanxi Urban Agglomeration (LXUA) exhibited a strong decoupling effect from 2014 to 2019. Technological carbon intensity plays a decisive role in the transition from non-decoupling to decoupling. Therefore, the government must increase investments in green and low-carbon technologies and strictly implement carbon reduction measures. Thus, the YRB and its urban agglomerations have considerable potential for carbon emission reduction and strong decoupling effects.


Asunto(s)
Carbono , Ríos , Carbono/análisis , Dióxido de Carbono/análisis , China , Desarrollo Económico , Ciudades
9.
Comput Methods Programs Biomed ; 242: 107822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832425

RESUMEN

BACKGROUND AND OBJECTIVE: Photoacoustic computed tomography (PACT) is a non-invasive biomedical imaging technology that has developed rapidly in recent decades, especially has shown potential for small animal studies and early diagnosis of human diseases. To obtain high-quality images, the photoacoustic imaging system needs a high-element-density detector array. However, in practical applications, due to the cost limitation, manufacturing technology, and the system requirement in miniaturization and robustness, it is challenging to achieve sufficient elements and high-quality reconstructed images, which may even suffer from artifacts. Different from the latest machine learning methods based on removing distortions and artifacts to recover high-quality images, this paper proposes an adaptive machine learning method to firstly predict and complement the photoacoustic sensor channel data from sparse array sampling and then reconstruct images through conventional reconstruction algorithms. METHODS: We develop an adaptive machine learning method to predict and complement the photoacoustic sensor channel data. The model consists of XGBoost and a neural network named SS-net. To handle data sets of different sizes and improve the generalization, a tunable parameter is used to control the weights of XGBoost and SS-net outputs. RESULTS: The proposed method achieved superior performance as demonstrated by simulation, phantom experiments, and in vivo experiment results. Compared with linear interpolation, XGBoost, CAE, and U-net, the simulation results show that the SSIM value is increased by 12.83%, 6.78%, 21.46%, and 12.33%. Moreover, the median R2 is increased by 34.4%, 8.1%, 28.6%, and 84.1% with the in vivo data. CONCLUSIONS: This model provides a framework to predict the missed photoacoustic sensor data on a sparse ring-shaped array for PACT imaging and has achieved considerable improvements in reconstructing the objects. Compared with linear interpolation and other deep learning methods qualitatively and quantitatively, our proposed methods can effectively suppress artifacts and improve image quality. The advantage of our methods is that there is no need for preparing a large number of images as the training dataset, and the data for training is directly from the sensors. It has the potential to be applied to a wide range of photoacoustic imaging detector arrays for low-cost and user-friendly clinical applications.


Asunto(s)
Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Aprendizaje Automático , Algoritmos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos
10.
Nutrients ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892474

RESUMEN

Cholecystectomy (CCE) is a standard clinical treatment for conditions like gallstones and cholecystitis. However, its link to post-CCE syndrome, colorectal cancer, and nonalcoholic fatty liver disease has raised concerns. Additionally, studies have demonstrated the disruptive effects of CCE on gut microbiota homeostasis and bile acid (BA) metabolism. Considering the role of gut microbiota in regulating host metabolic and immune pathways, the use of dietary and probiotic intervention strategies to maintain a stable gut ecosystem after CCE could potentially reduce associated disease risks. Inter-study variations have made it challenging to identify consistent gut microbiota patterns after CCE, a prerequisite for targeted interventions. In this study, we first meta-analyzed 218 raw 16S rRNA gene sequencing datasets to determine consistent patterns of structural and functional changes in the gut microbiota after CCE. Our results revealed significant alterations in the gut microbiota's structure and function due to CCE. Furthermore, we identified characteristic gut microbiota changes associated with CCE by constructing a random model classifier. In the validation cohort, this classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.713 and 0.683 when distinguishing between the microbiota of the CCE and healthy groups at the family and genus levels, respectively. Further, fecal metabolomics analysis demonstrated that CCE also substantially modified the metabolic profile, including decreased fecal short-chain fatty acid levels and disrupted BA metabolism. Importantly, dietary patterns, particularly excessive fat and total energy intake, influenced gut microbiota and metabolic profile changes post-CCE. These dietary habits were associated with further enrichment of the microbiota related to BA metabolism and increased levels of intestinal inflammation after CCE. In conclusion, our study identified specific alterations in gut microbiota homeostasis and metabolic profiles associated with CCE. It also revealed a potential link between dietary patterns and gut microbiota changes following CCE. Our study provides a theoretical basis for modulating gut microbiota homeostasis after CCE using long-term dietary strategies and probiotic interventions.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Estudios Transversales , Microbioma Gastrointestinal/fisiología , ARN Ribosómico 16S/genética , Ecosistema , Metaboloma , Homeostasis , Colecistectomía , Ácidos y Sales Biliares
11.
Mol Med Rep ; 28(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37711034

RESUMEN

Exosomal microRNAs (miRNAs/miRs) are potential biomarkers for the diagnosis and treatment of cardiovascular disease, and hyperglycemia serves an important role in the development of atherosclerosis. The present study aimed to investigate the expression profile of serum­derived exosomal miRNAs in coronary heart disease (CHD) with hyperglycemia, and to identify effective biomarkers for predicting coronary artery lesions. Serum samples were collected from eight patients with CHD and hyperglycemia and eight patients with CHD and normoglycemia, exosomes were isolated and differentially expressed miRNAs (DEMIs) were filtered using a human miRNA microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using standard enrichment computational methods for the target genes of DEMIs. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the values of the selected DEMIs in predicting the severity of coronary stenosis. A total of 10 DEMIs, including four upregulated miRNAs (hsa­let­7b­5p, hsa­miR­4313, hsa­miR­4665­3p and hsa­miR­940) and six downregulated miRNAs (hsa­miR­4459, hsa­miR­4687­3p, hsa­miR­6087, hsa­miR­6089, hsa­miR­6740­5p and hsa­miR­6800­5p), were screened in patients with CHD and hyperglycemia. GO analysis showed that the 'cellular process', 'single­organism process' and 'biological regulation' were significantly enriched. KEGG pathway analysis revealed that the 'mTOR signaling pathway', 'FoxO signaling pathway' and 'neurotrophin signaling pathway' were significantly enriched. Among these DEMIs, only hsa­let­7b­5p expression was positively correlated with both hemoglobin A1C levels and Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery score. ROC curves showed that hsa­let­7b­5p could serve as an effective biomarker for differentiating the severity of coronary stenosis. In conclusion, the present study demonstrated that serum­derived exosomal hsa­let­7b­5p is upregulated in patients with CHD and hyperglycemia, and may serve as a noninvasive biomarker for the severity of coronary stenosis.


Asunto(s)
Aterosclerosis , Estenosis Coronaria , Hiperglucemia , MicroARNs , Humanos , Biomarcadores , Estenosis Coronaria/diagnóstico , Estenosis Coronaria/genética , Hiperglucemia/complicaciones , Hiperglucemia/genética , MicroARNs/genética
12.
Nat Prod Res ; : 1-8, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37746838

RESUMEN

Inflammation and oxidative stress play pivotal role in the process of atherosclerosis. Scorpion venom is widely used as anti-cancer agent, however, the anti-inflammatory and antioxidant activities of scorpion venom peptides (SVPs) are rarely explored. In the current study, seven novel SVPs were isolated in a protective activity tracking isolation method in a cell model of benzo(α)pyrene (BaP)-induced human umbilical vein endothelial cells (HUVECs). The current study showed that SVP-1 [Tyr-Thr-Trp-Glu-Ala] significantly attenuated BaP-induced reactive oxygen species (ROS) over-production and inflammatory cytokines (IL-6, IL-1ß, TNF-α, NO and PGE2) over-expression. Furthermore, SVP-1 attenuated BaP-induced adhesion molecules over-expression and inhibited the NF-κB and AhR signalling pathways activation. Collectively, the present study, for the first time, shows that SVPs inhibit the NF-κB and AhR signalling pathways in HUVECs under BaP-exposure, which strongly suggests the therapeutic potential of SVPs against atherosclerosis.

13.
Environ Sci Technol ; 57(32): 12127-12134, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531586

RESUMEN

Although ammonia (NH3) synthesis efficiency from the NO reduction reaction (NORR) is significantly promoted in recent years, one should note that NO is one of the major air pollutants in the flue gas. The limited NO conversion ratio is still the key challenge for the sustainable development of the NORR route, which potentially contributes more to contaminant emissions rather than its upcycling. Herein, we provide a simple but effective approach for continuous NO reduction into NH3, promoted by coexisting SO2 poison as a gift in the flue gas. It is significant to discover that SO2 plays a decisive role in elevating the capacity of NO absorption and reduction. A unique redox pair of SO2-NO is constructed, which contributes to the exceptionally high conversion ratio for both NO (97.59 ± 1.42%) and SO2 (99.24 ± 0.49%) in a continuous flow. The ultrahigh selectivity for both NO-to-NH3 upcycling (97.14 ± 0.55%) and SO2-to-SO42- purification (92.44 ± 0.71%) is achieved synchronously, demonstrating strong practicability for the value-added conversion of air contaminants. The molecular mechanism is revealed by comprehensive in situ technologies to identify the essential contribution of SO2 to NO upcycling. Besides, realistic practicality is realized by the efficient product recovery and resistance ability against various poisoning effects. The proposed strategy in this work not only achieves a milestone efficiency for NH3 synthesis from the NORR but also raises great concerns about contaminant resourcing in realistic conditions.


Asunto(s)
Contaminantes Atmosféricos , Venenos , Amoníaco , Dióxido de Azufre , Contaminantes Atmosféricos/análisis , Oxidación-Reducción , Catálisis
14.
Orphanet J Rare Dis ; 18(1): 221, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501190

RESUMEN

OBJECTIVE: Heterozygous loss-of-function variants in the NPR2 gene cause short stature with nonspecific skeletal abnormalities and account for about 2 ~ 6% of idiopathic short stature. This study aimed to analyze and identify pathogenic variants in the NPR2 gene and explore the therapeutic response to recombinant growth hormone (rhGH). METHODS: NPR2 was sequenced in three Chinese Han patients with short stature via exome sequencing. In vitro functional experiments, homology modeling and molecular docking analysis of variants were performed to examine putative protein changes and the pathogenicity of the variants. RESULT: Three patients received rhGH therapy for two years, and two NPR2 heterozygous variants were identified in three unrelated cases: c.1579 C > T,p.Leu527Phe in patient 1 and c.2842dupC,p.His948Profs*5 in patient 2. Subsequently, a small gene model was constructed, and transcriptional analysis of the synonymous variant (c.2643G > A) was performed in patient 3, which revealed the deletion of exon 17 and the premature formation of a stop codon (p.His840Gln*). Functional studies showed that both NPR2 variants, His948Profs*5 and His840Gln*, failed to produce cGMP in the homozygous state. Furthermore, the Leu527Phe variant of NPR2 was almost unresponsive to the stimulatory effect of ATP on CNP-dependent guanylyl cyclase activity. This loss of response to ATP has not been previously reported. The average age of patients at the start of treatment was 6.5 ± 1.8 years old, and their height increased by 1.59 ± 0.1 standard deviation score after 2 years of treatment. CONCLUSION: In this report, two novel variants in NPR2 gene were described. Our findings broaden the genotypic spectrum of NPR2 variants in individuals with short stature and provid insights into the efficacy of rhGH in these patients.


Asunto(s)
Enanismo , Hormona del Crecimiento , Receptores del Factor Natriurético Atrial , Niño , Preescolar , Humanos , Adenosina Trifosfato , Estatura , Enanismo/tratamiento farmacológico , Enanismo/genética , Hormona del Crecimiento/genética , Hormona del Crecimiento/uso terapéutico , Simulación del Acoplamiento Molecular , Mutación , Receptores del Factor Natriurético Atrial/genética
15.
J Hazard Mater ; 458: 131964, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399724

RESUMEN

Nitrate (NO3-) is a widespread contaminant that threatens human health and ecological safety. Meanwhile, the disinfection byproducts chlorate (ClO3-) is generated inevitably in conventional wastewater treatment. Therefore, the contaminants mixture of NO3- and ClO3- are universal in common emission units. Photocatalysis technology is a feasible approach for the synergistic abatement of contaminant mixture, where matching suitable oxidation reactions is a potential strategy to improve the photocatalytic reduction reactions. Herein, formate (HCOOH) oxidation is introduced to facilitate the photocatalytic reduction of the NO3- and ClO3- mixture. As a result, high purification efficiency of NO3- and ClO3- mixture are achieved, evidenced by 84.6% e--dependent removal of the mixture at a reaction time of 30 min, with 94.5% N2 selectivity and 100% Cl- selectivity, respectively. Specifically, by the close combination of in-situ characterizations and theoretical calculations, the detailed reaction mechanism is revealed, in which the intermediate coupling-decoupling route from NO3- reduction and HCOOH oxidation is established by the chlorate-induced photoredox activation, leading to the significantly enhanced efficiency for the wastewater mixture purification. The practical application of this pathway is established for simulated wastewater to show its wide applicability. This work provides new insights into photoredox catalysis technology for its environmental application.

16.
Nat Biomed Eng ; 7(10): 1321-1334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37127710

RESUMEN

Serial assessment of the biomechanical properties of tissues can be used to aid the early detection and management of pathophysiological conditions, to track the evolution of lesions and to evaluate the progress of rehabilitation. However, current methods are invasive, can be used only for short-term measurements, or have insufficient penetration depth or spatial resolution. Here we describe a stretchable ultrasonic array for performing serial non-invasive elastographic measurements of tissues up to 4 cm beneath the skin at a spatial resolution of 0.5 mm. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging, which we validated via magnetic resonance elastography. We used the device to map three-dimensional distributions of the Young's modulus of tissues ex vivo, to detect microstructural damage in the muscles of volunteers before the onset of soreness and to monitor the dynamic recovery process of muscle injuries during physiotherapies. The technology may facilitate the diagnosis and treatment of diseases affecting tissue biomechanics.

17.
Int J Public Health ; 68: 1605433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255545

RESUMEN

Objectives: To investigate the associations of obesity with growth and puberty in children. Methods: From November 2017 to December 2019, height, weight, and Tanner stages of 26,879 children aged 3-18 years in Fuzhou, China were assessed. Results: The obese group was significantly taller than the non-obese group after age 4 years for both genders, yet there was no significant difference in height between obese and non-obese group after 15.5 years old for boys and 12.5 years old for girls. The inflection points of significant growth deceleration in obese and non-obese groups were 14.4 and 14.6 years old for boys, and 11.8 and 12.8 years old for girls, respectively. The proportions of testicular development in boys with obesity and non-obesity were 7.96% and 5.08% at 8.5-8.9 years old, respectively, while the proportions of breast development in girls were 17.19% and 3.22% at age 7.5-7.9 years old, respectively. Conclusion: Children with obesity were taller in early childhood, earlier onset of puberty and earlier cessation of growth than children with non-obesity of the same age. However, there was sex dimorphism on the effect of obesity on the incidence of precocious puberty.


Asunto(s)
Obesidad , Pubertad Precoz , Humanos , Niño , Preescolar , Femenino , Masculino , Adolescente , Estudios Transversales , Obesidad/epidemiología , Pubertad , Pubertad Precoz/epidemiología , China/epidemiología
18.
Food Funct ; 14(11): 5251-5263, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37194392

RESUMEN

Resistant starch (RS) has the ability to improve the structure of the gut microbiota, regulate glucolipid metabolism and maintain the health of the human body, and has been extensively studied by many scholars in recent years. However, previous studies have provided a wide range of results on the differences in the gut microbiota after RS intake. In this article, we performed a meta-analysis of a total of 955 samples of 248 individuals from the seven studies included to compare the gut microbiota of the baseline and the end-point of RS intake. At the end-point, RS intake was related to a lower gut microbial α-diversity and higher relative abundance of Ruminococcus, Agathobacter, Faecalibacterium and Bifidobacterium, and the functional pathways of the gut microbiota related to the carbohydrate metabolism, lipid metabolism, amino acid metabolism and genetic information processing were higher. Different types of resistant starch and different populations led to varied responses on the gut microbiome. The altered gut microbiome may contribute to improve the blood glucose level and insulin resistance, which may be a potential treatment route for diabetes, obesity and other metabolic diseases.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Humanos , Microbioma Gastrointestinal/fisiología , Almidón Resistente , Obesidad/microbiología , Almidón/química
19.
Research (Wash D C) ; 6: 0055, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040502

RESUMEN

As 2 indispensable counterparts in one catalysis system, the independent reduction and oxidation reactions require synergetic regulation for cooperatively promoting redox efficiency. Despite the current success in promoting the catalytic efficiency of half reduction or oxidation reactions, the lack of redox integration leads to low energy efficiency and unsatisfied catalytic performance. Here, we exploit an emerging photoredox catalysis system by combining the reactions of nitrate reduction for ammonia synthesis and formaldehyde oxidation for formic acid production, in which superior photoredox efficiency is achieved on the spatially separated dual active sites of Ba single atoms and Ti3+. High catalytic redox rates are accomplished for respective ammonia synthesis (31.99 ± 0.79 mmol gcat -1 h-1) and formic acid production (54.11 ± 1.12 mmol gcat -1 h-1), reaching a photoredox apparent quantum efficiency of 10.3%. Then, the critical roles of the spatially separated dual active sites are revealed, where Ba single atoms as the oxidation site using h+ and Ti3+ as the reduction site using e- are identified, respectively. The efficient photoredox conversion of contaminants is accomplished with environmental importance and competitive economic value. This study also represents a new opportunity to upgrade the conventional half photocatalysis into the complete paradigm for sustainable solar energy utilization.

20.
Environ Sci Pollut Res Int ; 30(25): 67443-67457, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37103708

RESUMEN

This paper focuses on the spatiotemporal evolution characteristics, as well as the driving factors, of carbon emissions in the prefecture-level cities in the Yellow River Basin (YB). The paper's findings will aid in promoting ecological conservation and high-quality development in the region. The initiatives undertaken in the YB are a significant national strategy towards achieving carbon peaking and carbon neutrality. To fully investigate the spatiotemporal evolution process, as well as the typical characteristics of their carbon emissions, conventional, and spatial Markov transition probability matrices were developed utilizing YB's panel data for 55 prefecture-level cities from 2003 to 2019. The generalized Divisia index decomposition method (GDIM) cleverly uses this data to conduct a complete analysis of the dynamics and driving processes influencing the change in carbon emissions in these cities. However, the evolution of carbon emissions in prefecture-level cities has reached a point of stability that maintains the original state, making it challenging to make meaningful short-term progress. The data indicates that prefecture-level cities in the YB are emitting more carbon dioxide on average. Neighborhood types in these cities significantly influence the transformation of carbon emissions. Low-emission areas can encourage a reduction in carbon emissions, whereas high-emission areas can encourage an increase. The spatial organisation of carbon emissions exhibits a "high-high convergence, low-low convergence, high-pulling low, low-inhibiting high" club convergence phenomenon. Carbon emissions rise with per capita carbon emissions, energy consumed, technology, and output scale, whereas it falls with carbon technology intensity and output carbon intensity. Hence, instead of enhancing the role of increase-oriented variables, prefecture-level cities in the YB should actively engage these reduction-oriented forces. The YB's key pathways for lowering carbon emissions include boosting research and development, promoting and applying carbon emission reduction technologies, lowering output carbon intensity and energy intensity, and improving energy use effectiveness.


Asunto(s)
Dióxido de Carbono , Ríos , Ciudades , China , Cabeza , Desarrollo Económico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA