Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38327015

RESUMEN

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Interferencia de ARN , ARN Bicatenario , Áfidos/genética , Animales , ARN Bicatenario/genética , Escarabajos/genética , Control Biológico de Vectores/métodos , Control de Insectos/métodos , Neonicotinoides/farmacología , Nitrocompuestos/farmacología
2.
Pestic Biochem Physiol ; 197: 105645, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072520

RESUMEN

RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.


Asunto(s)
Áfidos , Animales , Interferencia de ARN , Áfidos/genética , Áfidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Silenciador del Gen , ARN Bicatenario/genética , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo
3.
Insect Sci ; 30(5): 1337-1351, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36479917

RESUMEN

Spider mites (Tetranychidae) are destructive agricultural pests which have evolved strategies to overcome plant defenses, such as the ability to puncture the leaves of their hosts to feed. The expression of many genes with unknown functions is altered during feeding, but little is known about the role of these genes in plant-mite interactions. Here, we identified 3 novel gene families through analysis of genomic and transcriptomic data from 3 spider mite species. These GARP family genes encode glycine and alanine-rich proteins; they are present in mites (Acariformes) but absent in ticks (Parasitiformes) in the subclass Acari, indicating that these genes have undergone a significant expansion in spider mites and thus play important adaptive roles. Transcriptomic analysis revealed that the expression of GARP genes is strongly correlated with feeding and the transfer to new hosts. We used RNA interference to silence GARP1d in the two-spotted spider mite Tetranychus urticae, which inhibited feeding and egg laying and significantly increased mortality when the mites were transferred to soybean shoots; a similar effect was observed after TuVATPase was silenced. However, no changes in mite mortality were observed after TuGARP1d-silenced mites were placed on an artificial diet, which was different from the effect of TuVATPase silencing. Our results indicate that GARP family members play important roles in mite-plant interactions. Additional studies are needed to clarify the mechanisms underlying these interactions.

4.
J Pathol ; 258(4): 339-352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181299

RESUMEN

Hepatocellular carcinoma (HCC) is among the most prevalent visceral neoplasms. So far, reliable biomarkers for predicting HCC recurrence in patients undergoing surgery are far from adequate. In the aim of searching for genetic biomarkers involved in HCC development, we performed analyses of cDNA microarrays and found that the DNA repair gene NEIL3 was remarkably overexpressed in tumors. NEIL3 belongs to the Fpg/Nei protein superfamily, which contains DNA glycosylase activity required for the base excision repair for DNA lesions. Notably, the other Fpg/Nei family proteins NEIL1 and NEIL2, which have the same glycosylase activity as NEIL3, were not elevated in HCC; NEIL3 was specifically induced to participate in HCC development independently of its glycosylase activity. Using RNA-seq and invasion/migration assays, we found that NEIL3 elevated the expression of epithelial-mesenchymal transition (EMT) factors, including the E/N-cadherin switch and the transcription of MMP genes, and promoted the invasion, migration, and stemness phenotypes of HCC cells. Moreover, NEIL3 directly interacted with the key EMT player TWIST1 to enhance invasion and migration activities. In mouse orthotopic HCC studies, NEIL3 overexpression also caused a prominent E-cadherin decrease, tumor volume increase, and lung metastasis, indicating that NEIL3 led to EMT and tumor metastasis in mice. We further found that NEIL3 induced the transcription of MDR1 (ABCB1) and BRAF genes through the canonical E-box (CANNTG) promoter region, which the TWIST1 transcription factor recognizes and binds to, leading to the BRAF/MEK/ERK pathway-mediated cell proliferation as well as anti-cancer drug resistance, respectively. In the HCC cohort, the tumor NEIL3 level demonstrated a high positive correlation with disease-free and overall survival after surgery. In conclusion, NEIL3 activated the BRAF/MEK/ERK/TWIST pathway-mediated EMT and therapeutic resistances, leading to HCC progression. Targeted inhibition of NEIL3 in HCC individuals with NEIL3 induction is a promising therapeutic approach. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , ADN Glicosilasas , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , ADN Glicosilasas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factores de Transcripción Twist/metabolismo
5.
Sci Adv ; 8(29): eabm2411, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867785

RESUMEN

Collective migration is important to embryonic development and cancer metastasis, but migratory and nonmigratory cell fate discrimination by differential activity of signal pathways remains elusive. In Drosophila oogenesis, Jak/Stat signaling patterns the epithelial cell fates in early egg chambers but later renders motility to clustered border cells. How Jak/Stat signal spatiotemporally switches static epithelia to motile cells is largely unknown. We report that a nuclear protein, Dysfusion, resides on the inner nuclear membrane and interacts with importin α/ß and Nup153 to modulate Jak/Stat signal by attenuating Stat nuclear import. Dysfusion is ubiquitously expressed in oogenesis but specifically down-regulated in border cells when migrating. Increase of nuclear Stat by Dysfusion down-regulation triggers invasive cell behavior and maintains persistent motility. Mammalian homolog of Dysfusion (NPAS4) also negatively regulates the nuclear accumulation of STAT3 and cancer cell migration. Thus, our finding demonstrates that Dysfusion-dependent gating mechanism is conserved and may serve as a therapeutic target for Stat-mediated cancer metastasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Movimiento Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Mamíferos/metabolismo , Factores de Transcripción STAT/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2440-2448, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531691

RESUMEN

The quality markers(Q-markers) of Shujin Huoxue Capsules were comprehensively discriminated based on the five principles of transfer and traceability, specificity, compatibility, effectiveness and measurability. The compounds that could be transferred from the original medicinal materials to the preparation were selected with the principle of transfer and traceability. The specific components in the prescription were screened by reviewing literature with the principle of specificity. According to the principle of compatibility, the attributes of compounds were evaluated by the sovereign, minister, assistant and guide combination rules of the original medicinal materials in the prescription. According to the principle of measurability, the measurable components were summarized by reference to the pharmacopoeia and literature combined with the content. The mechanism of Shujin Huoxue Capsules in the treatment of osteoporosis was studied through network pharmacology based on the principle of effectiveness, which was the evaluation index of effectiveness. The chemical components screened out above were regarded as candidate Q-markers, and the cobweb model was plotted to obtain the comprehensive score of Q-markers. Hydroxysafflor yellow A, trachelosid, eleutheroside B, α-cyperone, protocatechuic acid, protocatechualdehyde and 4-methoxy salicylaldehyde were discriminated as the Q-markers of Shujin Huoxue Capsules based on the five principles combined with cobweb model.


Asunto(s)
Medicamentos Herbarios Chinos , Biomarcadores , Cápsulas , Medicamentos Herbarios Chinos/farmacología
7.
Cell Death Dis ; 12(11): 983, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686650

RESUMEN

Chronic and persistent inflammation is a well-known carcinogenesis promoter. Hepatocellular carcinoma (HCC) is one of the most common inflammation-associated cancers; most HCCs arise in the setting of chronic inflammation and hepatic injury. Both NF-κB and STAT3 are important regulators of inflammation. Centrosomal P4.1-associated protein (CPAP), a centrosomal protein that participates primarily in centrosome functions, is overexpressed in HCC and can increase TNF-α-mediated NF-κB activation and IL-6-induced STAT3 activation. A transgenic (Tg) mouse model with hepatocyte-specific CPAP expression was established to investigate the physiological role of CPAP in hepatocarcinogenesis. Obvious inflammatory cell accumulation and fatty change were observed in the livers of CPAP Tg mice. The alanine aminotransferase (ALT) level and the expression levels of inflammatory genes, such as IL-6, IL-1ß and TNF-α, were higher in CPAP Tg mice than in wild type (WT) mice. High-dose/short-term treatment with diethylnitrosamine (DEN) increased the ALT level, proinflammatory gene expression levels, and STAT3 and NF-κB activation in CPAP Tg mice; low-dose/long-term DEN treatment induced more severe liver tumor formation in CPAP Tg mice than in WT mice. CPAP can increase the expression of chemokine (C-C motif) ligand 16 (CCL-16), an important chemotactic cytokine, in human hepatocytes. CCL-16 expression is positively correlated with CPAP and TNF-α mRNA expression in the peritumoral part of HCC. In summary, these results suggest that CPAP may promote hepatocarcinogenesis through enhancing the inflammation pathway via increasing the expression of CCL-16.


Asunto(s)
Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/fisiopatología , Hepatocitos/inmunología , Inflamación/etiología , Neoplasias Hepáticas/etiología , Proteínas Asociadas a Microtúbulos/efectos adversos , Animales , Enfermedad Crónica , Humanos , Inflamación/fisiopatología , Neoplasias Hepáticas/fisiopatología , Ratones
8.
Cancer Sci ; 112(4): 1589-1602, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33525055

RESUMEN

Hodgkin lymphoma (HL) is composed of neoplastic Hodgkin and Reed-Sternberg cells in an inflammatory background. The neoplastic cells are derived from germinal center B cells that, in most cases, are infected by Epstein-Barr virus (EBV), which may play a role in tumorigenesis. Given that EBV-latent membrane protein 1 (LMP1) regulates autophagy in B cells, we explored the role of autophagy mediated by EBV or LMP1 in HL. We found that EBV-LMP1 transfection in HL cells induced a modest increase in autophagy signals, attenuated starvation-induced autophagic stress, and alleviated autophagy inhibition- or doxorubicin-induced cell death. LMP1 knockdown leads to decreased autophagy LC3 signals. A xenograft mouse model further showed that EBV infection significantly increased expression of the autophagy marker LC3 in HL cells. Clinically, LC3 was expressed in 15% (19/127) of HL samples, but was absent in all cases of nodular lymphocyte-predominant and lymphocyte-rich classic HL cases. Although expression of LC3 was not correlated with EBV status or clinical outcome, autophagic blockade effectively eradicated LMP1-positive HL xenografts with better efficacy than LMP1-negative HL xenografts. Collectively, these results suggest that EBV-LMP1 enhances autophagy and promotes the viability of HL cells. Autophagic inhibition may be a potential therapeutic strategy for treating patients with HL, especially EBV-positive cases.


Asunto(s)
Autofagia/genética , Supervivencia Celular/genética , Herpesvirus Humano 4/genética , Enfermedad de Hodgkin/patología , Regulación hacia Arriba/genética , Proteínas de la Matriz Viral/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular/genética , Línea Celular Tumoral , Niño , Preescolar , Doxorrubicina/uso terapéutico , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/virología , Femenino , Centro Germinal/efectos de los fármacos , Xenoinjertos , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/virología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Adulto Joven
9.
Sci Rep ; 10(1): 21342, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288848

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) may present initially in bone marrow, liver and spleen without any lymphadenopathy (referred to as BLS-type DLBCL), which is aggressive and frequently associated with hemophagocytic syndrome. Its tumorigenesis and molecular mechanisms warrant clarification. By gene microarray profiling with bioinformatics analysis, we found higher expression of the stem cell markers HOXA9 and NANOG, as well as BMP8B, CCR6 and S100A8 in BLS-type than conventional DLBCL. We further validated expression of these markers in a large cohort of DLBCL including BLS-type cases and found that expression of HOXA9 and NANOG correlated with inferior outcome and poor prognostic parameters. Functional studies with gene-overexpressed and gene-silenced DLBCL cell lines showed that expression of NANOG and HOXA9 promoted cell viability and inhibited apoptosis through suppression of G2 arrest in vitro and enhanced tumor formation and hepatosplenic infiltration in a tail-vein-injected mouse model. Additionally, HOXA9-transfected tumor cells showed significantly increased soft-agar clonogenic ability and tumor sphere formation. Interestingly, B cells with higher CCR6 expression revealed a higher chemotactic migration for CCL20. Taken together, our findings support the concept that tumor or precursor cells of BLS-type DLBCL are attracted by chemotaxis and home to the bone marrow, where the microenvironment promotes the expression of stem cell characteristics and aggressiveness of tumor cells.


Asunto(s)
Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Células Madre/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Muerte Celular/genética , Muerte Celular/fisiología , Línea Celular Tumoral , Biología Computacional , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones SCID , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , ARN Mensajero/metabolismo , Células Madre/fisiología
10.
Cell Death Differ ; 27(4): 1259-1273, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31511651

RESUMEN

Centrosomal P4.1-associated protein (CPAP) is overexpressed in hepatocellular carcinoma (HCC) and positively correlated with recurrence and vascular invasion. Here, we found that CPAP plays an important role in HCC malignancies. Functional characterization indicated that CPAP overexpression increases tumor growth, angiogenesis, and metastasis ex vivo and in vivo. In addition, overexpressed CPAP contributes to sorafenib resistance. Mechanical investigation showed that the expression level of CPAP is positively correlated with activated STAT3 in HCC. CPAP acts as a transcriptional coactivator of STAT3 by directly binding with STAT3. Interrupting the interaction between CPAP and STAT3 attenuates STAT3-mediated tumor growth and angiogenesis. Overexpression of CPAP upregulates several STAT3 target genes such as IL-8 and CD44 that are involved in angiogenesis, and CPAP mRNA expression is positively correlated with the levels of both mRNAs in HCC. Knocked-down expression of CPAP impairs IL-6-mediated STAT3 activation, target gene expression, cell migration, and invasion abilities. IL-6/STAT3-mediated angiogenesis is significantly increased by CPAP overexpression and can be blocked by decreased expression of IL-8. Our findings not only shed light on the importance of CPAP in HCC malignancies, but also provide potential therapeutic strategies for inhibiting the angiogenesis pathway and treating metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular/irrigación sanguínea , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/irrigación sanguínea , Neoplasias Hepáticas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neovascularización Patológica/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Neovascularización Patológica/genética , Factor de Transcripción STAT3/química , Transducción de Señal , Dominios Homologos src
11.
Leuk Lymphoma ; 61(5): 1108-1118, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870198

RESUMEN

Angioimmunoblastic T-cell lymphoma (AITL) carries genetic mutations of TET2, RHOA, and IDH2, but the prognostic impact of these mutations is not widely investigated. Although one study shows no difference in overall survival between patients with or without RHOA G17V mutation, a poor performance status is associated with RHOA G17V-mutated AITL, which is an independent adverse factor. We retrospectively investigated the prognostic impact of RHOA G17V mutation in AITL patients. A total of 31 cases were enrolled (male-to-female, 2.1; mean age: 62.8 years). RHOA G17V mutation was analyzed by deep sequencing. We found that in contrast to RHOA-wild type, patients with RHOA G17V-mutated AITL more frequently had B symptoms (p = .035), stronger PD1 expression (p = .045), ≥3 TFH markers (p = .011), higher blood vessel density (p<.001), and poorer progression-free survival (p = .046). These results support a role for RHOA genetic testing in AITL patients as ROHA G17V mutation carries a worse prognosis, probably associated with B symptoms and stage IV disease.


Asunto(s)
Linfadenopatía Inmunoblástica , Linfoma de Células T , Femenino , Humanos , Linfadenopatía Inmunoblástica/diagnóstico , Linfadenopatía Inmunoblástica/genética , Linfoma de Células T/diagnóstico , Linfoma de Células T/genética , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Retrospectivos , Taiwán/epidemiología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
12.
Cancer Lett ; 472: 97-107, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31875524

RESUMEN

Many Aurora-A inhibitors have been developed for cancer therapy; however, the specificity and safety of Aurora-A inhibitors remain uncertain. The Aurora-A mRNA yields nine different 5'-UTR isoforms, which result from mRNA alternative splicing. Interestingly, we found that the exon 2-containing Aurora-A mRNA isoforms are predominantly expressed in cancer cell lines as well as human colorectal cancer tissues, making the Aurora-A mRNA exon 2 a promising treatment target in Aurora-A-overexpressing cancers. In this study, a selective siRNA, siRNA-2, which targets Aurora-A mRNA exon 2, was designed to translationally inhibit the expression of Aurora-A in cancer cells but not normal cells; locked nucleic acid (LNA)-modified siRNA-2 showed improved efficacy in inhibiting Aurora-A mRNA translation and tumor growth. Xenograft animal models combined with noninvasion in vivo imaging system (IVIS) analysis further confirmed the anticancer effect of LNA-siRNA-2 with improved efficiency and safety and reduced side effects. Mice orthotopically injected with colorectal cancer cells, LNA-siRNA-2 treatment not only inhibited the tumor growth but also blocked liver and lung metastasis. The results of our study suggest that LNA-siRNA-2 has the potential to be a novel therapeutic agent for cancer treatment.


Asunto(s)
Aurora Quinasa A/genética , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Isoformas de Proteínas/genética , Regiones no Traducidas 5'/efectos de los fármacos , Empalme Alternativo/genética , Animales , Aurora Quinasa A/antagonistas & inhibidores , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Ratones , Metástasis de la Neoplasia , Oligonucleótidos/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Biomed Sci ; 26(1): 44, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170980

RESUMEN

BACKGROUND: Our previous report suggested that centrosomal P4.1-associated protein (CPAP) is required for Hepatitis B virus (HBV) encoded non-structure protein X (HBx)-mediated nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activation. CPAP is overexpressed in HBV-associated hepatocellular carcinoma (HCC); however, the interaction between CPAP and HBx in HBV-HCC remains unclear. METHODS: The mRNA expression of CPAP and HBx was analyzed by quantitative-PCR (Q-PCR). NF-κB transcriptional activity and CPAP promoter activity were determined using a reporter assay in Huh7 and Hep3B cells. Immunoprecipitation (IP) and in situ proximal ligation assay (PLA) were performed to detect the interaction between CPAP and HBx. Chromatin-IP was used to detect the association of cAMP response element binding protein (CREB) and HBx with the CPAP promoter. Cell proliferation was measured using cell counting kit CCK-8, Bromodeoxyuridine (5-bromo-2'-deoxyuridine, BrdU) incorporation, and clonogenic assays. The tumorigenic effects of CPAP were determined using xenograft animal models. RESULTS: HBx can transcriptionally up-regulate CPAP via interacting with CREB. Overexpressed CPAP directly interacted with HBx to promote HBx-mediated cell proliferation and migration; SUMO modification of CPAP was involved in interacting with HBx. Knocked-down expression of CPAP decreased the HBx-mediated tumorigenic effects, including cytokines secretion. Interestingly, overexpressed CPAP maintained the HBx protein stability in an NF-κB-dependent manner; and the expression levels of CPAP and HBx were positively correlated with the activation status of NF-κB in HCC. Increased expression of CPAP and CREB mRNAs existed in the high-risk group with a lower survival rate in HBV-HCC. CONCLUSION: The interaction between CPAP and HBx can provide a microenvironment to facilitate HCC development via enhancing NF-κB activation, inflammatory cytokine production, and cancer malignancies. This study not only sheds light on the role of CPAP in HBV-associated HCC, but also provides CPAP as a potential target for blocking the hyper-activated NF-κB in HCC.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Asociadas a Microtúbulos/farmacología , Transactivadores/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Reguladoras y Accesorias Virales
14.
Cell Death Dis ; 8(1): e2555, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28079881

RESUMEN

By using RNA-immunoprecipitation assay following next-generation sequencing, a group of cell cycle-related genes targeted by hnRNP Q1 were identified, including Aurora-A kinase. Overexpressed hnRNP Q1 can upregulate Aurora-A protein, but not alter the mRNA level, through enhancing the translational efficiency of Aurora-A mRNA, either in a cap-dependent or -independent manner, by interacting with the 5'-UTR of Aurora-A mRNA through its RNA-binding domains (RBDs) 2 and 3. By ribosomal profiling assay further confirmed the translational regulation of Aurora-A mRNA by hnRNP Q1. Overexpression of hnRNP Q1 promotes cell proliferation and tumor growth. HnRNP Q1/ΔRBD23-truncated mutant, which loses the binding ability and translational regulation of Aurora-A mRNA, has no effect on promoting tumor growth. The expression level of hnRNP Q1 is positively correlated with Aurora-A in colorectal cancer. Taken together, our data indicate that hnRNP Q1 is a novel trans-acting factor that binds to Aurora-A mRNA 5'-UTRs and regulates its translation, which increases cell proliferation and contributes to tumorigenesis in colorectal cancer.


Asunto(s)
Aurora Quinasa A/genética , Carcinogénesis/genética , Neoplasias Colorrectales/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Masculino , Proteínas con Motivos de Reconocimiento de ARN , ARN Mensajero/genética
15.
Transl Res ; 175: 129-143.e13, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27150054

RESUMEN

Diffuse large B-cell lymphoma (DLBCL), the most common lymphoma, shows either no response or development of resistance to further treatment in 30% of the patients that warrants the development of novel drugs. We have reported that ON 01910.Na (rigosertib), a multikinase inhibitor, is selectively cytotoxic for DLBCL and induces more hyperphosphorylation and sumoylation of Ran GTPase-activating protein 1 (RanGAP1) in DLBCL cells than in non-neoplastic lymphoblastoid cell line. However, the exact mechanism of rigosertib-induced cell death in DLBCL remains to be clarified. Here, we analyzed the efficacy of rigosertib against DLBCL cells in vitro and in vivo and its molecular effects on tumor biology. We found for the first time that rigosertib attenuated expression of unmodified and sumoylated tumor necrosis factor receptor-associated factor 6 (TRAF6) and c-Myb and inhibited nuclear entry of sumoylated RanGAP1, TRAF6, and c-Myb that was confirmed by immunofluorescence. Moreover, co-immunoprecipitation showed that rigosertib induced sequestration of c-Myb and TRAF6 in the cytoplasm by stimulating their sumoylation through the RanGAP1*SUMO1/Ubc9 pathway. Specific knockdown of c-Myb and TRAF6 induced tumor cell apoptosis and cell cycle arrest at G1 phase. Xenograft mice bearing lymphoma cells also exhibited effective tumor regression on rigosertib treatment along with cytoplasmic expression of c-Myb and TRAF6. Nuclear expression of c-Myb in clinical cases of DLBCL correlated with a poor prognosis. Thus, suppression of c-Myb and TRAF6 activity may have therapeutic implication in DLBCL. These data support the clinical development of rigosertib in DLBCL.


Asunto(s)
Citoplasma/metabolismo , Glicina/análogos & derivados , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Sulfonas/uso terapéutico , Sumoilación/efectos de los fármacos , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/metabolismo , Técnicas de Silenciamiento del Gen , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Fosforilación/efectos de los fármacos , Pronóstico , Sulfonas/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...