Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Cancer ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109825

RESUMEN

Currently, conventional immunotherapies for the treatment of non-small cell lung cancer (NSCLC) have low response rates and benefit only a minority of patients, particularly those with advanced disease, so novel therapeutic strategies are urgent deeded. Therapeutic cancer vaccines, a form of active immunotherapy, harness potential to activate the adaptive immune system against tumor cells via antigen cross-presentation. Cancer vaccines can establish enduring immune memory and guard against recurrences. Vaccine-induced tumor cell death prompts antigen epitope spreading, activating functional T cells and thereby sustaining a cancer-immunity cycle. The success of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rendered cancer vaccines a promising avenue, especially when combined with immunotherapy or chemoradiotherapy for NSCLC. This review delves into the intricate antitumor immune mechanisms underlying therapeutic cancer vaccines, enumerates the tumor antigen spectrum of NSCLC, discusses different cancer vaccines progress and summarizes relevant clinical trials. Additionally, we analyze the combination strategies, current limitations, and future prospects of cancer vaccines in NSCLC treatment, aiming to offer fresh insights for their clinical application in managing NSCLC. Overall, cancer vaccines offer promising potential for NSCLC treatment, particularly combining with chemoradiotherapy or immunotherapy could further improve survival in advanced patients. Exploring inhaled vaccines or prophylactic vaccines represents a crucial research avenue.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38959416

RESUMEN

Bronchopulmonary dysplasia (BPD) and neurodevelopmental impairment (NDI) are among the most common morbidities affecting preterm infants. Although BPD is a predictor of poor NDI, it is currently uncertain how BPD contributes to brain injury in preterm infants. Extracellular vesicles (EVs) are involved in inter-organ communication in diverse pathological processes. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly and activation of inflammatory response. We assessed expression profiles of alveolar macrophage (AM) markers, CD11b, CD11c, and CD206, and ASC in EVs isolated from the plasma of preterm infants at risk for BPD at 1 week of age. We found that infants on higher fraction inspired oxygen (FiO2) therapy (HO2, ≥30%) had increased levels of AM-derived EV-ASC compared with infants on lower FiO2 (LO2, <30%). To assess the function of these EVs, we performed adoptive transfer experiments by injecting them into the circulation of newborn mice. We discovered that mice that received EVs from infants on HO2 had increased lung inflammation, decreased alveolarization, and disrupted vascular development, the hallmarks of BPD. Importantly, these EVs crossed the blood-brain barrier and the EVs from infants on HO2 caused inflammation, reduced cell survival, and increased cell death with features of pyroptosis and necroptosis in the hippocampus. These results highlight a novel role for AM-derived EV-ASC in mediating the lung-to-brain crosstalk that is critical in the pathogenesis of BPD and brain injury and identify potential novel targets for preventing and treating BPD and brain injury in preterm infants.

4.
J Virol ; 98(7): e0076924, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38829138

RESUMEN

Highly pathogenic viruses from family Phenuiviridae, which are mainly transmitted by arthropods, have intermittently sparked epidemics worldwide. In particular, tick-borne bandaviruses, such as severe fever with thrombocytopenia syndrome virus (SFTSV), continue to spread in mountainous areas, resulting in an average mortality rate as high as 10.5%, highlighting the urgency and importance of vaccine development. Here, an mRNA vaccine developed based on the full-length SFTSV glycoprotein, containing both the receptor-binding domain and the fusion domain, was shown to confer complete protection against SFTSV at a very low dose by triggering a type 1 helper T cell-biased cellular immune response in rodents. Moreover, the vaccine candidate elicited long-term immunity and protection against SFTSV for at least 5 months. Notably, it provided complete cross-protection against other bandaviruses, such as the Heartland virus and Guertu virus, in lethal challenge models. Further research revealed that the conserved epitopes among bandaviruses within the full-length SFTSV glycoprotein may facilitate broad-spectrum protection mediated by the cellular immune response. Collectively, these findings demonstrate that the full-length SFTSV glycoprotein mRNA vaccine is a promising vaccine candidate for SFTSV and other bandaviruses, and provide guidance for the development of broad-spectrum vaccines from conserved antigens and epitopes. IMPORTANCE: Tick-borne bandaviruses, such as SFTSV and Heartland virus, sporadically trigger outbreaks in addition to influenza viruses and coronaviruses, yet there are no specific vaccines or therapeutics against them. mRNA vaccine technology has advantages in terms of enabling in situ expression and triggering cellular immunity, thus offering new solutions for vaccine development against intractable viruses, such as bandaviruses. In this study, we developed a novel vaccine candidate for SFTSV by employing mRNA vaccination technology and using a full-length glycoprotein as an antigen target. This candidate vaccine confers complete and durable protection against SFTSV at a notably low dose while also providing cross-protection against Heartland virus and Guertu virus. This study highlights the prospective value of full-length SFTSV-glycoprotein-based mRNA vaccines and suggests a potential strategy for broad-spectrum bandavirus vaccines.


Asunto(s)
Glicoproteínas , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Vacunas Virales , Animales , Phlebovirus/inmunología , Phlebovirus/genética , Ratones , Síndrome de Trombocitopenia Febril Grave/prevención & control , Síndrome de Trombocitopenia Febril Grave/inmunología , Glicoproteínas/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas de ARNm/inmunología , Protección Cruzada/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Femenino , Inmunidad Celular , Ratones Endogámicos BALB C
5.
Angiogenesis ; 27(3): 423-440, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38709389

RESUMEN

BACKGROUND: Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS: We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS: ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION: These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.


Asunto(s)
Oxígeno , Retinopatía de la Prematuridad , Animales , Retinopatía de la Prematuridad/patología , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Ratones , Anticuerpos Monoclonales Humanizados/farmacología , Ratones Endogámicos C57BL , Animales Recién Nacidos , Modelos Animales de Enfermedad , Humanos , Hiperoxia/patología , Hiperoxia/complicaciones , Retina/patología , Retina/metabolismo , Retina/efectos de los fármacos , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ratones Transgénicos , Neovascularización Retiniana/patología , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/tratamiento farmacológico , Microglía/patología , Microglía/metabolismo , Microglía/efectos de los fármacos
6.
Wei Sheng Yan Jiu ; 53(2): 267-274, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604963

RESUMEN

OBJECTIVE: To investigate the association of metals/metalloids exposure with risk of liver disfunction among occupational population in Hunan Province, and to explore the potential dose-response relationship. METHODS: In 2017, a mining area in Hunan Province was chosen as the research site, and eligible workers were recruited as study subjects. General demographic characteristics, levels of 23 metals/metalloids in plasma and urine, and liver function index(total bilirubin(TBIL), alanine amino transferase(ALT), globulin(GLB) and γ-glutamyl transferase(GGT)) were obtained by questionnaire, physical examination and laboratory tests. Participants were followed up in 2018, 2019 and 2020 respectively. Cox proportional risk model was used to evaluate the relationship between metal/metalloids exposure and risk of liver disfunction, and dose-response relationship curves were plotted by using the restricted cubic spline function. RESULTS: A total of 891 employees were recruited in the study, 576(65.0%)were aged ≤45 years, 832(93.4%) were male and 530(59.5%) worked as smelters. After adjusting various factors such as age, gender, BMI, type of work, education, smoking, alcohol consumption, diet, stress, medical history, exercise and tea consumption, positive correlations were found between plasma tungsten(HR=4.90, 95%CI 1.17-20.48) and urinary barium(HR=1.07, 95%CI 1.02-1.12) levels with abnormally elevated TBIL levels. Additionally, a significant association was observed between plasma thallium and the risk of elevated ALT levels(HR=11.15, 95%CI 1.97-63.29). CONCLUSION: Plasma tungsten and thallium, along with barium found in urine, are risk factors for the development of abnormally elevated liver function indices in occupational groups.


Asunto(s)
Hepatopatías , Metaloides , Humanos , Masculino , Femenino , Estudios Prospectivos , Talio , Bario , Tungsteno , Metales
7.
Wei Sheng Yan Jiu ; 52(6): 863-870, 2023 Nov.
Artículo en Chino | MEDLINE | ID: mdl-38115648

RESUMEN

OBJECTIVE: To investigate the association between levels of twenty-three plasma metals/metalloids and the risk of arrhythmia among occupational population. METHODS: In 2017, a total of 765 workers aged 18 and above were recruited from a non-ferrous metal factory. The general demographic characteristics were obtained by using questionnaire. Plasma metal/metalloid levels were determined by inductively coupled plasma mass spectrometry(ICP-MS). Participants were followed up in 2018, 2019 and 2020 respectively. After the elements that may affect the incidence of arrhythmia were screened out by least absolute shrinkage and selection operator(LASSO) regression, Cox regression model was used to analyze the relationship between levels of selected elements and risk of arrhythmia occurrence, Quantile g-computation model was used to analyze the effect of element mixture exposure on arrhythmia, and the dose-response curve was estimated by using restricted cubic spline(RCS) function. RESULTS: Of all the research subjects, 386(50.5%) were ≤45 years old; 401(52.4%) had 20 years or more of work experience; 712(93.1%) subjects were male workers. The incidence of arrhythmia was 17.6%. After adjusting for age, seniority, gender, body mass index(BMI), marital status, education level, smoking, drinking, drinking tea, regular exercise, chronic diseases(hypertension, hyperlipidemia), sleep quality and psychological stress, chromium, molybdenum and antimony increased the risk of arrhythmia with HR(95%CI) values of 1.22(1.11-1.34), 1.51(1.20-1.90) and 2.38(1.03-5.49), respectively, while barium reduced the risk of arrhythmia with HR(95%CI) value of 0.98(0.95-1.00). CONCLUSION: Chromium, molybdenum and antimony are the risk factors while barium is the protective factor for arrhythmia.


Asunto(s)
Metaloides , Molibdeno , Masculino , Humanos , Persona de Mediana Edad , Femenino , Estudios Prospectivos , Antimonio , Bario , Metales , Cromo
8.
J Neuroinflammation ; 20(1): 205, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679766

RESUMEN

BACKGROUND: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found pharmacological inhibition of caspase-1, which blocks GSDMD activation, attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. METHODS: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal days 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1) and CD68, markers of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. RESULTS: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure did not increase AIF1 + , CD68 + , or TUNEL + cell numbers or decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air-exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, hypoxia-induced factor 1 pathway, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. CONCLUSIONS: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.


Asunto(s)
Lesiones Encefálicas , Hiperoxia , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Técnicas de Inactivación de Genes , Hipocampo , Hiperoxia/complicaciones , Recien Nacido Prematuro , Ratones Noqueados , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros
9.
Res Sq ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398125

RESUMEN

Background: Neonatal hyperoxia exposure is associated with brain injury and poor neurodevelopment outcomes in preterm infants. Our previous studies in neonatal rodent models have shown that hyperoxia stimulates the brain's inflammasome pathway, leading to the activation of gasdermin D (GSDMD), a key executor of pyroptotic inflammatory cell death. Moreover, we found inhibition of GSDMD activation attenuates hyperoxia-induced brain injury in neonatal mice. We hypothesized that GSDMD plays a pathogenic role in hyperoxia-induced neonatal brain injury and that GSDMD gene knockout (KO) will alleviate hyperoxia-induced brain injury. Methods: Newborn GSDMD knockout mice and their wildtype (WT) littermates were randomized within 24 h after birth to be exposed to room air or hyperoxia (85% O2) from postnatal day 1 to 14. Hippocampal brain inflammatory injury was assessed in brain sections by immunohistology for allograft inflammatory factor 1 (AIF1), a marker of microglial activation. Cell proliferation was evaluated by Ki-67 staining, and cell death was determined by TUNEL assay. RNA sequencing of the hippocampus was performed to identify the transcriptional effects of hyperoxia and GSDMD-KO, and qRT-PCR was performed to confirm some of the significantly regulated genes. Results: Hyperoxia-exposed WT mice had increased microglia consistent with activation, which was associated with decreased cell proliferation and increased cell death in the hippocampal area. Conversely, hyperoxia-exposed GSDMD-KO mice exhibited considerable resistance to hyperoxia as O2 exposure failed to increase either AIF1+ or TUNEL+ cell numbers, nor decrease cell proliferation. Hyperoxia exposure differentially regulated 258 genes in WT and only 16 in GSDMD-KO mice compared to room air- exposed WT and GSDMD-KO, respectively. Gene set enrichment analysis showed that in the WT brain, hyperoxia differentially regulated genes associated with neuronal and vascular development and differentiation, axonogenesis, glial cell differentiation, and core development pathways hypoxia-induced factor 1, and neuronal growth factor pathways. These changes were prevented by GSDMD-KO. Conclusion: GSDMD-KO alleviates hyperoxia-induced inflammatory injury, cell survival and death, and alterations of transcriptional gene expression of pathways involved in neuronal growth, development, and differentiation in the hippocampus of neonatal mice. This suggests that GSDMD plays a pathogenic role in preterm brain injury, and targeting GSDMD may be beneficial in preventing and treating brain injury and poor neurodevelopmental outcomes in preterm infants.

10.
Front Oncol ; 13: 1191614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427120

RESUMEN

Head and neck cancer (HNC) is one of the most common cancers on the planet, with approximately 600,000 new cases diagnosed and 300,000 deaths every year. Research into the biological basis of HNC has advanced slowly over the past decades, which has made it difficult to develop new, more effective treatments. The patient-derived organoids (PDOs) are made from patient tumor cells, resembling the features of their tumors, which are high-fidelity models for studying cancer biology and designing new precision medicine therapies. In recent years, considerable effort has been focused on improving "organoids" technologies and identifying tumor-specific medicine using head and neck samples and a variety of organoids. A review of improved techniques and conclusions reported in publications describing the application of these techniques to HNC organoids is presented here. Additionally, we discuss the potential application of organoids in head and neck cancer research as well as the limitations associated with these models. As a result of the integration of organoid models into future precision medicine research and therapeutic profiling programs, the use of organoids will be extremely significant in the future.

11.
J Trace Elem Med Biol ; 79: 127206, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37224743

RESUMEN

BACKGROUND: A growing number of researches indicated the association between plasma trace elements and blood lipids. However, the potential interaction and dose-response relationship were less frequently reported. METHODS: In this study, a total of 3548 participants were recruited from four counties in Hunan Province, South China. Demographic characteristics were collected by face-to-face interviews and inductively coupled plasma mass spectrometry (ICPMS) was used to determine the levels of 23 trace elements in plasma. We applied a fully adjusted generalized linear regression model (GLM) and a multivariate restricted cubic spline (RCS) to estimate the correlation, dose-response relationship and possible interaction between 23 trace elements and four blood lipid markers. RESULTS: The results indicated positive dose-response relationships of plasma 66zinc with triglycerides (TG) and low density lipoprotein cholesterol (LDL-C), plasma 78selenium with LDL-C and total cholesterol (TCH), and plasma 59cobalt with high-density lipoprotein cholesterol (HDL-C). There was a negative dose-response relationship between 59cobalt and LDL-C. Further analysis found that 66zinc and 59cobalt had an antagonistic effect on the risk of increased LDL-C level. CONCLUSIONS: This study added new evidence for the potential adverse effects of 66Zn and 78Se on blood lipids, and provided new insight into the threshold value setting for metals as well as the intervention strategy for dyslipidemia.


Asunto(s)
Oligoelementos , Humanos , Estudios Transversales , LDL-Colesterol , Lípidos , Triglicéridos , HDL-Colesterol , Zinc , Cobalto , China
12.
Trials ; 24(1): 192, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36918924

RESUMEN

BACKGROUND: Hypoxia is a very common adverse event that occurs during gastrointestinal endoscopy under sedation, especially in older patients, owing to limited reservation of heart, brain, lung, and other organs. Prolonged or severe hypoxia can cause ischemia of the coronary artery and permanent nervous system damage, and even result in death. Hence, it is imperative to reduce or prevent hypoxia during gastrointestinal endoscopy under sedation in older patients. Although several oxygen delivery methods would reduce hypoxia during this procedure, early detection of respiratory depression and early administration of intervention would be the best method to reduce or even confirm the hypoxia. Capnographic monitoring is reportedly more sensitive for detecting respiratory depression before the onset of hypoxia than the current clinical routine monitoring of pulse oxygen saturation; however, its effect is controversial. Therefore, in this study, we aimed to improve the safety of gastrointestinal endoscopy under sedation in older patients. METHODS: A multicenter, randomized, single-blind, two-arm parallel-group, controlled with an active comparator, interventional superiority clinical trial will be conducted to evaluate the impact of an additional capnographic monitoring-based intervention on the incidence of hypoxia in older patients. Patients (n = 1800) scheduled for gastrointestinal endoscopy with propofol sedation will be randomly assigned to either a control or interventional arm, wherein standard or capnographic monitoring is implemented, respectively. DISCUSSION: This study primarily aims to examine whether an additional capnographic monitoring-based intervention can reduce the incidence of hypoxia in older patients during gastrointestinal endoscopy under propofol and sufentanil sedation. The results of this study may extensively impact gastrointestinal endoscopy under sedation and the development of associated guidelines. TRIAL REGISTRATION: ClinicalTrials.gov NCT05030870. Registered on September 1, 2021.


Asunto(s)
Propofol , Insuficiencia Respiratoria , Humanos , Anciano , Propofol/efectos adversos , Hipnóticos y Sedantes/efectos adversos , Incidencia , Método Simple Ciego , Capnografía/efectos adversos , Capnografía/métodos , Endoscopía Gastrointestinal/efectos adversos , Hipoxia/diagnóstico , Hipoxia/epidemiología , Hipoxia/etiología , Insuficiencia Respiratoria/etiología , Sedación Consciente/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
13.
Sci Rep ; 13(1): 143, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599874

RESUMEN

Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are among the most common morbidities affecting extremely premature infants who receive oxygen therapy. Many clinical studies indicate that BPD is associated with advanced ROP. However, the mechanistic link between hyperoxia, BPD, and ROP remains to be explored. Gasdermin D (GSDMD) is a key executor of inflammasome-induced pyroptosis and inflammation. Inhibition of GSDMD has been shown to attenuate hyperoxia-induced BPD and brain injury in neonatal mice. The objective of this study was to further define the mechanistic roles of GSDMD in the pathogenesis of hyperoxia-induced BPD and ROP in mouse models. Here we show that global GSDMD knockout (GSDMD-KO) protects against hyperoxia-induced BPD by reducing macrophage infiltration, improving alveolarization and vascular development, and decreasing cell death. In addition, GSDMD deficiency prevented hyperoxia-induced ROP by reducing vasoobliteration and neovascularization, improving thinning of multiple retinal tissue layers, and decreasing microglial activation. RNA sequencing analyses of lungs and retinas showed that similar genes, including those from inflammatory, cell death, tissue remodeling, and tissue and vascular developmental signaling pathways, were induced by hyperoxia and impacted by GSDMD-KO in both models. These data highlight the importance of GSDMD in the pathogenesis of BPD and ROP and suggest that targeting GSDMD may be beneficial in preventing and treating BPD and ROP in premature infants.


Asunto(s)
Displasia Broncopulmonar , Gasderminas , Retinopatía de la Prematuridad , Animales , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas de Unión a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/complicaciones , Gasderminas/genética , Gasderminas/metabolismo
14.
Acta Biomater ; 158: 599-610, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603734

RESUMEN

Reactive oxygen species (ROS) generated during photodynamic therapy (PDT) can induce autophagy to protect tumor cell from PDT-induced apoptosis. In this work, a self-delivery autophagy regulator (designated as CeCe) is developed for autophagy promotion sensitized PDT against tumor. Briefly, CeCe is prepared by the assembly of a photosensitizer of chlorin e6 (Ce6) and autophagy promoter of celastrol. By virtue of intermolecular interactions, Ce6 and celastrol are able to self-assemble into nanomedicine with great photodynamic performance and autophagy regulation capacity. Under light irradiation, CeCe would produce ROS in tumor cells to amplify the oxidative stress and promote cell autophagy. As a result, CeCe exhibits an enhanced photo toxicity by inducing autophagic cell death. In vivo experiments indicate that CeCe can predominantly accumulate in tumor tissue for a robust PDT. Moreover, CeCe has a superior therapeutic efficiency compared to monotherapy and combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor effect of PDT and autophagy promotion. This self-delivery nanomedicine may advance the development of the co-delivery nanoplatform to improve the antitumor efficacy of PDT by promoting autophagy. STATEMENT OF SIGNIFICANCE: Autophagy is a "double-edged sword" in cellular homeostasis and metabolism, which can promote tumor progression but also induce an unknown impact on tumor inhibition. In this work, a self-delivery autophagy regulator (designated as CeCe) was developed for autophagy promotion sensitized photodynamic therapy (PDT). By virtue of intermolecular interactions, Ce6 and celastrol were found to self-assemble into stable CeCe without drug excipients, which exhibited great photodynamic performance and autophagy regulation capacity. In vitro and in vivo findings demonstrated a superior tumor suppression ability of CeCe over the monotherapy as well as the combined treatment of Ce6 and celastrol, suggesting a synergistic antitumor efficacy by PDT and autophagy promotion.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Especies Reactivas de Oxígeno/metabolismo , Retroalimentación , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Autofagia , Porfirinas/farmacología , Nanopartículas/uso terapéutico
15.
Pharmacol Res ; 187: 106564, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423790

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) play a dual role in tumors. However, the factors which drive the function of TAMs in cholangiocarcinoma remain largely undefined. METHODS: SHH signaling pathway and endoplasmic reticulum stress (ERS) indicators were detected in clinical tissues and cholangiocarcinoma cell lines. TAMs were co-cultured with cholangiocarcinoma cells under conditions of hypoxia/normoxia. Polarized TAMs were counted by flow cytometry, and TGF-ß1 levels in cell supernatants were detected by ELISA. The effects of glioma-associated oncogene GLI2 on TAMs themselves and cholangiocarcinoma cells were examined by conducting interference and overexpression assays. RESULTS: The SHH signaling pathway and ERS were both activated in tumor tissues or tumor cell lines under conditions of hypoxia. In co-culture experiments, the presence of cholangiocarcinoma cells increased the proportion of M2-polarized TAMs and the secretion of TGF-ß1 by TAMs, while knockdown of SHH expression reversed those increases. Overexpression of GLI2 in TAMS or stimulation of TAMS with Hh-Ag1.5 increased their levels of TGF-ß1 expression. Furthermore, under co-culture conditions, interference with GLI2 expression in TAMs reduced the tumor cell migration, invasion, and ER homeostasis induced by Hh-Ag1.5-pretreated TAMs. Under conditions of hypoxia, the presence of cholangiocarcinoma cells promoted the expression of GLI2 and TGF-ß1 in Tams, and in turn, TAMs inhibited the apoptosis and promoted the migration and invasion of cholangiocarcinoma cells. In vivo, an injection of cholangiocarcinoma cells plus TAMs contributed to the growth, EMT, and ER homeostasis of tumor tissue, while an injection of TAMs with GLI2 knockdown had the opposite effects. CONCLUSION: Cholangiocarcinoma cells regulated TAM polarization and TGF-ß1 secretion via a paracrine SHH signaling pathway, and in turn, TAMs promoted the growth, EMT, and ER homeostasis of cholangiocarcinoma cells via TGF-ß1.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Transición Epitelial-Mesenquimal , Proteínas Hedgehog , Factor de Crecimiento Transformador beta1 , Macrófagos Asociados a Tumores , Proteína Gli2 con Dedos de Zinc , Humanos , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Movimiento Celular , Colangiocarcinoma/patología , Proteínas Hedgehog/metabolismo , Proteínas Nucleares , Macrófagos Asociados a Tumores/metabolismo
16.
ACS Appl Mater Interfaces ; 14(48): 53501-53510, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399048

RESUMEN

Lipid peroxide (LPO) is the hallmark of ferroptosis, which is a promising antitumor modality for its unique advantages. However, a cellular defense system would weaken the antitumor efficacy of ferrotherapy. Herein, a GPX4 inhibitor of ML162 and a photosensitizer of chlorine e6 (Ce6) are used to prepare the self-delivery nanomedicine (C-ML162) through hydrophobic and electrostatic interactions to enhance ferroptosis by photodynamic therapy (PDT). Specifically, carrier-free C-ML162 improves the solubility, stability, and cellular uptake of antitumor agents. Upon light irradiation, the internalized C-ML162 generates large amounts of reactive oxygen species (ROS) to oxidize cellular unsaturated lipid into LPO. More importantly, C-ML162 can directly inactivate GPX4 to enhance the accumulation of toxic LPO, inducing ferroptotic cell death. Additionally, C-ML162 is capable of accumulating at a tumor site for effective treatment. This self-delivery system to amplify lipid peroxidation via GPX4 inactivation for PDT initiated ferrotherapy might provide an appealing strategy against malignancies.


Asunto(s)
Nanomedicina , Fotoquimioterapia , Peroxidación de Lípido
17.
Photodiagnosis Photodyn Ther ; 40: 103122, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36115558

RESUMEN

BACKGROUND: Cholangiocarcinoma recurs frequently following excision surgery and is usually inoperable, while radiotherapy, chemotherapy, and immunotherapy are of limited benefit. As palliative care, percutaneous transhepatic cholangial drainage (PTCD) can relieve biliary obstruction, prevent jaundice, and maintain quality of life (QOL), but does not improve overall survival. In contrast, photodynamic therapy (PDT) has been demonstrated to prolong the survival of inoperable cancer patients. OBJECTIVE: This study evaluated the clinical efficacy of percutaneous transhepatic cholangioscopy (PTCS)-guided PDT following PTCD versus PTCD alone for recurrent inoperable cholangiocarcinoma. METHODS: The case files of 39 patients with postoperative recurrence were retrospectively analyzed, including 18 receiving PTCS-guided PDT (PTCS-PDT group) and 21 receiving PTCD only as a control (PTCD group). Survival time was compared by Kaplan-Meier analysis and log-rank test, and QOL by the Functional Assessment of Cancer Therapy-Hepatobiliary (FACT-HEP) questionnaire. Clinicodemographic factors, including serum bilirubin and adverse reaction rates, were compared by Student's t-test or Fisher's exact test. The maximum follow-up period was 71 months. RESULTS: Median survival time was significantly longer in the PTCS-PDT group than the PTCD group (23 months vs. 10 months, P = 0.00001). At 6 and 12 months post-treatment, total FACT-HEP score was lower in the PTCS-PDT group (P < 0.05), indicating improved QOL. There was no significant difference in total adverse events incidence between groups (19 [51.4%] vs. 15 [71.4%]; P = 0.131). CONCLUSION: PTCS-guided PDT can prolong survival and improve the QOL of patients with postoperative cholangiocarcinoma recurrence without increasing complications. SIGNIFICANT AND/OR NEW FINDINGS: Compared to PTCD alone, PTCS-guided PDT significantly prolonged the survival time of patients with postoperative recurrent extrahepatic cholangiocarcinoma. Photodynamic therapy also improved patient quality of life by facilitating timely removal of the PTCD drainage tube. PTCS-guided PDT did not increase surgery-related complications except for skin phototoxicity, which can be easy avoided and treated.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Fotoquimioterapia , Humanos , Calidad de Vida , Fotoquimioterapia/métodos , Estudios Retrospectivos , Colangiocarcinoma/tratamiento farmacológico , Resultado del Tratamiento , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/tratamiento farmacológico
18.
Front Med (Lausanne) ; 9: 929096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004375

RESUMEN

Backgrounds and aims: Pain is the main reason for hysteroscopy failure. In day-surgical settings, hysteroscopy procedures are commonly performed with the patient under sedation. Hypoxia is the most common adverse event during sedation and can lead to severe adverse events. This study aimed to compare the incidence of hypoxia when using high-flow nasal oxygen (HFNO) with that when using regular nasal oxygen in patients undergoing hysteroscopy with sedation. Materials and methods: In this single-center, prospective, randomized, single-blinded study, 960 female patients undergoing elective diagnostic or operative hysteroscopy were randomly enrolled into the following two groups: the regular nasal group [O2 (3-6 L/min) covered by an HFNO] and the HFNO group [O2 (30-60 L/min)] from September 2021 to December 2021. All women were sedated with propofol (1.5 mg/kg) and remifentanil (1.5 µg/kg) in the operating room. The primary outcome was the incidence of hypoxia (75% ≤ SpO2 < 90%, < 60 s). Results: HFNO decreased the incidence of hypoxia (75% ≤ SpO2 < 90%, < 60 s), subclinical respiratory depression (90% ≤ SpO2 < 95%) and severe hypoxia (SpO2 < 75% for any duration or 75% ≤ SpO2 < 90% for ≥ 60 s) from 24.38 to 0.83%, from 11.25 to 1.46% and from 3.75 to 0%, respectively (P < 0.001). Conclusion: In procedures conducted to treat female infertility, HFNO can reduce hypoxia during hysteroscopy in patients sedated with propofol, and it can prevent the occurrence of subclinical respiratory depression and severe hypoxia.

19.
ACS Nano ; 16(8): 12290-12304, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35942986

RESUMEN

Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Nanopartículas , Profármacos , Ratones , Animales , Profármacos/química , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoconjugados/química , Micelas , Nanopartículas/uso terapéutico , Nanopartículas/química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Sistemas de Liberación de Medicamentos
20.
Stem Cells Transl Med ; 11(8): 828-840, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35758326

RESUMEN

Mesenchymal stem cell (MSC) extracellular vesicles (EVs) have beneficial effects in preclinical bronchopulmonary dysplasia and pulmonary hypertension (BPD-PH) models. The optimal source, dosing, route, and duration of effects are however unknown. The objectives of this study were to (a) compare the efficacy of GMP-grade EVs obtained from Wharton's Jelly MSCs (WJ-MSCs) and bone marrow (BM-MSCs), (b) determine the optimal dosing and route of administration, (c) evaluate its long-term effects, and (d) determine how MSC EVs alter the lung transcriptome. Newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P)1-P14 were given (a) intra-tracheal (IT) BM or WJ-MSC EVs or placebo, (b) varying doses of IT WJ-MSC EVs, or (c) IT or intravenous (IV) WJ-MSC EVs on P3. Rats were evaluated at P14 or 3 months. Early administration of IT BM-MSC or WJ-MSC EVs had similar beneficial effects on lung structure and PH in hyperoxia-exposed rats. WJ-MSC EVs however had superior effects on cardiac remodeling. Low, medium, and high dose WJ-MSC EVs had similar cardiopulmonary regenerative effects. IT and IV WJ-MSC EVs similarly improved vascular density and reduced PH in hyperoxic rats. Gene-set enrichment analysis of transcripts differentially expressed in WJ-MSC EV-treated rats showed that induced transcripts were associated with angiogenesis. Long-term studies demonstrated that a single early MSC EV dose has pulmonary vascular protective effects 3 months after administration. Together, our findings have significant translational implications as it provides critical insight into the optimal source, dosing, route, mechanisms of action, and duration of effects of MSC-EVs for BPD-PH.


Asunto(s)
Displasia Broncopulmonar , Vesículas Extracelulares , Hiperoxia , Hipertensión Pulmonar , Células Madre Mesenquimatosas , Gelatina de Wharton , Animales , Displasia Broncopulmonar/terapia , Modelos Animales de Enfermedad , Humanos , Hiperoxia/complicaciones , Hipertensión Pulmonar/terapia , Recién Nacido , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...