Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chin J Traumatol ; 27(2): 114-120, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37311687

RESUMEN

PURPOSE: Ischemia and hypoxia are the main factors limiting limb replantation and transplantation. Static cold storage (SCS), a common preservation method for tissues and organs, can only prolong limb ischemia time to 4 - 6 h. The normothermic machine perfusion (NMP) is a promising method for the preservation of tissues and organs, which can extend the preservation time in vitro by providing continuous oxygen and nutrients. This study aimed to evaluate the difference in the efficacy of the 2 limb preservation methods. METHODS: The 6 forelimbs from beagle dogs were divided into 2 groups. In the SCS group (n = 3), the limbs were preserved in a sterile refrigerator at 4 °C for 24 h, and in the NMP group (n = 3), the perfusate prepared with autologous blood was used for the oxygenated machine perfusion at physiological temperature for 24 h, and the solution was changed every 6 h. The effects of limb storage were evaluated by weight gain, perfusate biochemical analysis, enzyme-linked immunosorbent assay, and histological analysis. All statistical analyses and graphs were performed using GraphPad Prism 9.0 one-way or two-way analysis of variance. The p value of less than 0.05 was considered to indicate statistical significance. RESULTS: In the NMP group, the weight gained percentage was 11.72% ± 4.06%; the hypoxia-inducible factor-1α contents showed no significant changes; the shape of muscle fibers was normal; the gap between muscle fibers slightly increased, showing the intercellular distance of (30.19 ± 2.83) µm; and the vascular α-smooth muscle actin (α-SMA) contents were lower than those in the normal blood vessels. The creatine kinase level in the perfusate of the NMP group increased from the beginning of perfusion, decreased after each perfusate change, and remained stable at the end of perfusion showing a peak level of 4097.6 U/L. The lactate dehydrogenase level of the NMP group increased near the end of perfusion and reached the peak level of 374.4 U/L. In the SCS group, the percentage of weight gain was 0.18% ± 0.10%, and the contents of hypoxia-inducible factor-1α increased gradually and reached the maximum level of (164.85 ± 20.75) pg/mL at the end of the experiment. The muscle fibers lost their normal shape and the gap between muscle fibers increased, showing an intercellular distance of (41.66 ± 5.38) µm. The contents of vascular α-SMA were much lower in the SCS group as compared to normal blood vessels. CONCLUSIONS: NMP caused lesser muscle damage and contained more vascular α-SMA as compared to SCS. This study demonstrated that NMP of the amputated limb with perfusate solution based on autologous blood could maintain the physiological activities of the limb for at least 24 h.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Preservación de Órganos , Animales , Perros , Temperatura , Preservación de Órganos/métodos , Perfusión/métodos , Extremidad Superior , Miembro Anterior , Aumento de Peso , Hígado
2.
Int J Mol Sci ; 20(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934541

RESUMEN

Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy. Comparing the biological and transcriptome gene characteristics of MSCs from different sources provides an important basis for the screening of clinically used cells. The main purpose of this experiment was to establish methods for the isolation and culture of MSCs from five different canine sources, including adipose tissue, bone marrow, umbilical cord, amniotic membrane, and placenta, and compare biological and transcriptome characteristics of MSCs, in order to provide a basis for the clinical application of canine MSCs. MSCs were isolated from Chinese pastoral dogs, and the following experiments were performed: (1) the third, sixth, and ninth generations of cells were counted, respectively, and a growth curve was plotted to calculate the MSC population doubling time; (2) the expression of CD34 and CD44 surface markers was studied by immunofluorescence; (3) the third generation of cells were used for osteogenetic and adipogenic differentiation experiments; and (4) MSC transcriptome profiles were performed using RNA sequencing. All of the five types of MSCs showed fibroblast-like adherent growth. The cell surface expressed CD44 instead of CD34; the third-generation MSCs had the highest proliferative activity. The average population doubling time of adipose mesenchymal stem cells (AD-MSCs), placenta mesenchymal stem cells (P-MSCs), bone marrow mesenchymal stem cells (BM-MSCs), umbilical cord mesenchymal stem cells (UC-MSCs), and amniotic mesenchymal stem cells (AM-MSCs) were 15.8 h, 21.2 h, 26.2 h, 35 h, and 41.9 h, respectively. All five types of MSCs could be induced to differentiate into adipocytes and osteoblasts in vitro, with lipid droplets appearing after 8 days and bone formation occurring 5 days after AD-MSC induction. However, the multilineage differentiation for the remaining of MSCs was longer compared to that of the AD-MSCs. The MSC transcriptome profiles showed that AD-MSC and BM-MSCs had the highest homology, while P-MSCs were significantly different compared to the other four types of MSCs. All the isolated MSCs had the main biological characteristics of MSCs. AD-MSCs had the shortest time for proliferation, adipogenesis, and osteogenic differentiation.


Asunto(s)
Perros/genética , Células Madre Mesenquimatosas/metabolismo , Especificidad de Órganos/genética , Transcriptoma/genética , Animales , Biomarcadores/metabolismo , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/citología , Reproducibilidad de los Resultados
3.
Stem Cells Int ; 2018: 1983025, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29861739

RESUMEN

OBJECTIVE: The aim of this study was to assess the efficacy of canine umbilical cord mesenchymal stem cells (UC-MSCs) on the treatment of knee osteoarthritis in dogs. METHODS: Eight dogs were evenly assigned to two groups. The canine model of knee osteoarthritis was established by surgical manipulation of knee articular cartilage on these eight dogs. UC-MSCs were isolated from umbilical cord Wharton's jelly by 0.1% type collagenase I and identified by immunofluorescence staining and adipogenic and osteogenic differentiation in vitro. A suspension of allogeneic UC-MSCs (1 × 106) and an equal amount of physiological saline was injected into the cavitas articularis in the treated and untreated control groups, respectively, on days 1 and 3 posttreatment. The structure of the canine knee joint was observed by magnetic resonance imaging (MRI), B-mode ultrasonography, and X-ray imaging at the 3rd, 7th, 14th, and 28th days after treatment. Concurrently, the levels of IL-6, IL-7, and TNF-α in the blood of the examined dogs were measured. Moreover, the recovery of cartilage and patella surface in the treated group and untreated group was compared using a scanning electron microscope (SEM) after a 35-day treatment. RESULTS: Results revealed that the isolated cells were UC-MSCs, because they were positive for CD44 and negative for CD34 surface markers, and the cells were differentiated into adipocytes and osteoblasts. Imaging technology showed that as treatment time increased, the high signal in the MRI T2-weighted images decreased, the echo-free space in B ultrasonography images disappeared basically, and the continuous linear hypoechoic region at the trochlear sulcus thickened. On X-ray images, the serrate defect at the ventral cortex of the patella improved, and the low-density gap of the ventral patella and trochlear crest gradually increased in the treated group. On the contrary, the high signal in the MRI T2-weighted images and the echo-free space in B ultrasonography images still increased after a 14-day treatment in the untreated control group, and the linear hypoechoic region was discontinuous. On the X-ray images, there was no improvement in the serrate defect of the ventral cortex of the patella. Results for inflammatory factors showed that the blood levels of IL-6, IL-7, and TNF-α of the untreated control group were significantly higher than those of the treated group (P < 0.05) 7-14 days posttreatment. The result of SEM showed that the cartilage neogenesis in the treated group had visible neonatal tissue and more irregular arrangement of new tissue fibers than that of the untreated control group. Furthermore, more vacuoles but without collagen fibers were observed in the cartilage of the untreated control group, and the thickness of the neogenetic cartilage in the treated group (65.13 ± 5.29, 65.30 ± 5.83) and the untreated control group (34.27 ± 5.42) showed a significant difference (P < 0.01). CONCLUSION: Significantly higher improvement in cartilage neogenesis and recovery was observed in the treated group compared to the untreated control group. The joint fluid and the inflammatory response in the treated group decreased. Moreover, improved recovery in the neogenetic cartilage, damaged skin fascia, and muscle tissue around the joints was more significant in the treated group than in the untreated control group. In conclusion, canine UC-MSCs promote the repair of cartilage and patella injury in osteoarthritis, improve the healing of the surrounding tissues, and reduce the inflammatory response.

4.
Poult Sci ; 93(11): 2841-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25239532

RESUMEN

Fasting-induced hypothalamic metabolic reprogramming is involved in regulating energy homeostasis and appetite in mammals, but this phenomenon remains unclear in poultry. In this study, the expression patterns of a panel of genes related to neuropeptides, glucose, and lipid metabolism enzymes in the hypothalamus of chickens during fasting and refeeding were characterized by microarray analysis and quantitative PCR. Results showed that 48 h of fasting upregulated (P < 0.05) the mRNA expressions of orexigenic neuropeptide Y and agouti-related protein but downregulated (P < 0.05) that of anorexigenic neuropeptide pro-opiomelanocortin; growth hormone-releasing hormone; islet amyloid polypeptide; thyroid-stimulating hormone, ß; and glycoprotein hormones, α polypeptide. After 48 h of fasting, the mRNA expression of fatty acid ß-oxidation [peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A, and forkhead box O1], energy sensor protein [sirtuin 1 (SIRT1) and forkhead box O1], and glycolysis inhibitor (pyruvate dehydrogenase kinase, isozyme 4) were enhanced, but that of fatty acid synthesis and transport associated genes (acetyl-CoA carboxylase α, fatty acid synthase, apolipoprotein A-I, endothelial lipase, and fatty acid binding protein 7) were suppressed. Liver and muscle also demonstrated similar expression patterns of genes related to glucose and lipid metabolism with hypothalamus, except for that of acetyl-CoA carboxylase α, acyl-CoA synthetase long-chain family member 4, and apolipoprotein A-I. The results of intracerebroventricular (ICV) injection experiments confirmed that α-lipoic acid (ALA, pyruvate dehydrogenase kinase, isozyme 4 inhibitor, 0.10 µmol) and NADH (SIRT1 inhibitor, 0.80 µmol) significantly suppressed the appetite of chickens, whereas 2-deoxy-d-glucose (glycolytic inhibitor, 0.12 to 1.20 µmol) and NAD(+) (SIRT1 activator, 0.08 to 0.80 µmol) increased feed intake in chickens. The orexigenic effect of NAD(+) was also blocked by cotreatment with NADH. However, ICV injection of either GW7647 (PPARα agonist) or GW6471 (PPARα antagonist) showed no effects on feed intake. Results suggested that hypothalamic glycolysis (inhibited by ALA and promoted by 2-deoxy-d-glucose) and SIRT1 (inhibited by NADH and promoted by NAD(+)), not PPARα, were probably involved in feed intake regulation in chickens.


Asunto(s)
Pollos/genética , Pollos/metabolismo , Ayuno , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Metabolismo de los Lípidos , Animales , Dieta/veterinaria , Inyecciones Intraventriculares/veterinaria , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
5.
Fen Zi Xi Bao Sheng Wu Xue Bao ; 40(4): 272-5, 2007 Aug.
Artículo en Chino | MEDLINE | ID: mdl-17966466

RESUMEN

To investigate the cell differentiation and the expression profiles of PPARy and C/EBPalpha mRNA, the rat preadipocytes were cultured after dispersed by enzymolysis of collagenase type I and the cell shape were observed under the microscope. The MTT method was adopted to determine the growth curve. The expression levels of PPARgamma and C/EBPalpha mRNA were also detected by relative quantitative RT-PCR. The growth of preadipocytes demonstrated an S-shaped or sigmoid curve. The PPARgamma mRNA in rat preadipocytes showed rather low transcript at day 3, but its expression level markedly increased by 2.5 fold at day 5 and remained at a higher level till day 9. Similarly, the expression level of C/EBPalpha mRNA in rat preadipocytes could hardly be detected at day 3 and dramatically increased at day 7. There was a 2.3 fold increase of C/EBPalpha mRNA expression level at day 7 compared with that at day 5. In a conclusion, this study suggested that both the initiating and maintaining of differentiation process were regulated by PPARgamma, while C/EBPalpha was likely to participate in the maintaining of differentiation process only.


Asunto(s)
Adipocitos/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Diferenciación Celular/genética , PPAR gamma/genética , Adipocitos/citología , Animales , Células Cultivadas , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA