Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
2.
J Phys Chem B ; 128(20): 4959-4974, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38742764

RESUMEN

Simulating chemically reactive phenomena such as proton transport on nanosecond to microsecond and beyond time scales is a challenging task. Ab initio methods are unable to currently access these time scales routinely, and traditional molecular dynamics methods feature fixed bonding arrangements that cannot account for changes in the system's bonding topology. The Multiscale Reactive Molecular Dynamics (MS-RMD) method, as implemented in the Rapid Approach for Proton Transport and Other Reactions (RAPTOR) software package for the LAMMPS molecular dynamics code, offers a method to routinely sample longer time scale reactive simulation data with statistical precision. RAPTOR may also be interfaced with enhanced sampling methods to drive simulations toward the analysis of reactive rare events, and a number of collective variables (CVs) have been developed to facilitate this. Key advances to this methodology, including GPU acceleration efforts and novel CVs to model water wire formation are reviewed, along with recent applications of the method which demonstrate its versatility and robustness.

3.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38626338

RESUMEN

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Asunto(s)
Aminopiridinas , Neoplasias Encefálicas , Glioblastoma , Microglía , Receptores Quiméricos de Antígenos , Glioblastoma/terapia , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/tratamiento farmacológico , Animales , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Humanos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Liposomas/química , Pirroles/química , Pirroles/farmacología , Inmunoterapia , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo , Inmunoterapia Adoptiva , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos
4.
STAR Protoc ; 5(2): 103023, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640064

RESUMEN

Social cooperation is fundamentally important for group animals but rarely studied in mice because of their natural aggressiveness. Here, we present a new water-reward assay to investigate mutualistic cooperative behavior in mice. We describe the construction of the apparatus and provide details of the procedures and analysis for investigators to characterize and quantify the mutualistic cooperative behavior. This protocol has been validated in mice and can be used for investigating mechanisms of cooperation. For complete details on the use and execution of this protocol, please refer to Zhang et al. and Wang et al.1,2.

5.
Adv Sci (Weinh) ; : e2401100, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38634209

RESUMEN

Due to multidimensional complexity of solid tumor, development of rational T-cell combinations and corresponding formulations is still challenging. Herein, a triple combination of T cells are developed with Indoleamine 2,3-dioxygenase inhibitors (IDOi) and Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). To maximize synergism, a spatiotemporally controlled T-cell engineering technology to formulate triple drugs into one cell therapeutic, is established. Specifically, a sequentially responsive core-shell nanoparticle (SRN) encapsulating IDOi and CDK4/6i is anchored onto T cells. The yielded SRN-T cells migrated into solid tumor, and achieved a 1st release of IDOi in acidic tumor microenvironment (TME). Released IDOi restored tryptophan supply in TME, which activated effector T cells and inhibited Tregs. Meanwhile, 1st released core is internalized by tumor cells and degraded by glutathione (GSH), to realize a 2nd release of CDK4/6i, which induced up-regulated expression of C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine ligand 5 (CCL5), and thus significantly increased tumor infiltration of T cells. Together, with an enhanced recruitment and activation, T cells significantly suppressed tumor growth, and prolonged survival of tumor-bearing mice. This study demonstrated rationality and superiority of a tri-drug combination mediated by spatiotemporally controlled cell-engineering technology, which provides a new treatment regimen for solid tumor.

6.
Int J Stroke ; : 17474930241241994, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38472157

RESUMEN

BACKGROUND: Hyperglycemia is associated with worse stroke outcomes, but it is uncertain whether tight glycemic control during the acute stroke period is associated with a better outcome. We conducted a meta-analysis to compare the effect of tight glycemic control versus loose glycemic control in the acute phase of stroke patients. METHODS: A literature search was performed to identify randomized controlled trials comparing the safety and efficacy of tight glycemic control with a relatively loose control of blood glucose of acute stroke (ischemic or hemorrhagic) patients within 24 h after stroke onset. We required that the blood glucose level of the patients should not be lower than 6.11 mmol/L at the time of enrollment, and for the intensive blood glucose control range, we defined the blood glucose level as lower than that of the control group. The primary efficacy outcome measure was deaths from any cause at 90 days. Secondary efficacy outcomes comprised the number of participants with modified Rankin score (mRS). We define mRS scores 0-2 as favorable scores, recurrent stroke, and the National Institute of Health Stroke Scale or the European Stroke Scale scores. We defined the number of participants with hypoglycemia as our primary safety outcome. Subgroup analysis was performed according to age, the variety of interventions, maintained glucose level, and status of hypoglycemia on National Institute of Health Stroke Scale (NIHSS) scores or European Stroke Scale (ESS) scores. RESULTS: Fifteen randomized controlled trials (RCTs) with 2957 participants meeting the including criteria were identified and included in this meta-analysis, although not all included data on every outcome measure. Data on the primary efficacy endpoint, mortality at 90 days, was available in 11 RCTs, a total of 2575 participants. There was no significant difference between the intervention and control groups (odds ratio (OR): 1.00; 95% confidence interval (CI): 0.81-1.23; P = 0.99). For secondary endpoints, there was no difference between intervention and control groups for a mRS from 0 to 2 (OR: 0.96; 95% CI: 0.80-1.15; P = 0.69; data from 9 RCTs available), or recurrent stroke (OR: 1.34; 95% CI: 0.92-1.96; P = 0.13; data from 3 RCTs available). For NIHSS scores or ESS scores, there was a small difference in favor of intensive controls (standardized mean difference: -0.29; 95% CI: -0.54 to -0.04; P = 0.02). There was a marked increase in hypoglycemia with tight control: (OR of 9.46 (95% CI: 4.59-19.50; P < 0.00001; data from 9 RCTs available). CONCLUSION: There was no difference between tight and loose glycemic control on mortality, independence, or recurrent stroke outcome in acute stroke, but an increase in hypoglycemia. There was a small effect improvement on neurological scales, but the relevance of this needs to be confirmed in future adequately powered studies.

7.
Asia Pac J Clin Nutr ; 33(1): 11-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494683

RESUMEN

BACKGROUND AND OBJECTIVES: Sichuan cuisine is characterized by high salt and oil content. We aimed to evaluate the effects of the Sichuan cuisine version of Chinese heart-healthy diet (CHH diet-SC) on blood pressure reduction among hypertensive adults. METHODS AND STUDY DESIGN: The Chinese heart-healthy diet (CHH) trial was a multicenter randomized controlled feeding trial among Chinese hypertensive people. We conducted a secondary analysis of the CHH trial using data from the Sichuan center in Southwest China. Fifty-three people aged 25 to 75 years with a mean systolic blood pressure (SBP) between 130 and 159 mmHg were enrolled. Eligible participants underwent a 1-week run-in period with the typical local diet and were randomized 1:1 to consume the CHH diet-SC (n=27) or typical local diet (n=26) for the next 4-week. The primary outcome was the net change in SBP, the secondary outcomes included diastolic blood pressure (DBP), mean arterial pressure (MAP), and the rate of BP control. RESULTS: Compared with the control group, the CHH diet-SC decreased cooking salt, oil, and red meat content and increased inclusion of whole grains, fruits, seafood, low-fat dairy, soybean, and nuts; the SBP experienced reductions of 7.54, 8.60, 9.14, and 10.1 mmHg at the end of weeks 1 through 4; the DBP was reduced 4.01 mmHg at week 4; the MAP was significantly reduced 6.02 mmHg finally; and rate of BP control significantly increased (p<0.05). CONCLUSIONS: Adoption of the CHH diet-SC for 4 weeks can significantly reduce BP and increase the rate of BP control in hypertensive adults.


Asunto(s)
Hipertensión , Hipotensión , Adulto , Humanos , Presión Sanguínea , Dieta , Dieta Saludable , Cloruro de Sodio Dietético , Persona de Mediana Edad , Anciano
8.
Acta Pharmacol Sin ; 45(6): 1237-1251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38472317

RESUMEN

Both epidemiological and animal studies suggest that adverse environment during pregnancy can change the offspring development programming, but it is difficult to achieve prenatal early warning. In this study we investigated the impact of prenatal dexamethasone exposure (PDE) on sperm quality and function of blood-testis barrier (BTB) in adult offspring and the underlying mechanisms. Pregnant rats were injected with dexamethasone (0.1, 0.2 and 0.4 mg·kg-1·d-1, s.c.) from GD9 to GD20. After weaning (PW4), the pups were fed with lab chow. At PW12 and PW28, the male offspring were euthanized to collect blood and testes samples. We showed that PDE significantly decreased sperm quality (including quantity and motility) in male offspring, which was associated with impaired BTB and decreased CX43/E-cadherin expression in the testis. We demonstrated that PDE induced morphological abnormalities of fetal testicle and Sertoli cell development originated from intrauterine. By tracing to fetal testicular Sertoli cells, we found that PDE dose-dependently increased expression of histone lysine demethylases (KDM1B), decreasing histone 3 lysine 9 dimethylation (H3K9me2) levels of follistatin-like-3 (FSTL3) promoter region and increased FSTL3 expression, and inhibited TGFß signaling and CX43/E-cadherin expression in offspring before and after birth. These results were validated in TM4 Sertoli cells following dexamethasone treatment. Meanwhile, the H3K9me2 levels of FSTL3 promoter in maternal peripheral blood mononuclear cell (PBMC) and placenta were decreased and its expression increased, which was positively correlated with the changes in offspring testis. Based on analysis of human samples, we found that the H3K9me2 levels of FSTL3 promoter in maternal blood PBMC and placenta were positively correlated with fetal blood testosterone levels after prenatal dexamethasone exposure. We conclude that PDE can reduce sperm quality in adult offspring rats, which is related to the damage of testis BTB via epigenetic modification and change of FSTL3 expression in Sertoli cells. The H3K9me2 levels of the FSTL3 promoter and its expression in the maternal blood PBMC can be used as a prenatal warning marker for fetal testicular dysplasia.


Asunto(s)
Barrera Hematotesticular , Dexametasona , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Animales , Masculino , Femenino , Embarazo , Dexametasona/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Transducción de Señal/efectos de los fármacos , Ratas , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología
9.
Ecotoxicology ; 33(2): 151-163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38329639

RESUMEN

Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C. pyrenoidosa increased, but the soluble protein content decreased. SPM with different particle sizes had less effect on SOD of C. pyrenoidosa, but showed a promoting effect on CAT and MDA as well as soluble protein content. In terms of photosynthetic activity, high concentrations (70, 90 mg/L) and small particle sizes (0-75, 75-120 µm) of SPM had a greater effect on the chlorophyll a content of C. pyrenoidosa. In addition, different concentrations of SPM had no significant effect on the potential photosynthetic activity of PS II (Fv/F0) and the maximum quantum yield of PS II (Fv/Fm), but the inhibition of the initial slope (alpha), the maximum photosynthetic rate (ETRmax) and the semi-light saturation point (Ik) increased with the increase of SPM concentration. Fv/F0, ETRmax, and Ik of C. pyrenoidosa showed some degree of recovery after inhibition in the presence of SPM of different particle sizes.


Asunto(s)
Chlorella , Contaminantes Químicos del Agua , Clorofila A/metabolismo , Clorofila A/farmacología , Material Particulado/toxicidad , Material Particulado/metabolismo , Estuarios , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/análisis
10.
Free Radic Biol Med ; 214: 54-68, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311259

RESUMEN

Peritoneal mesothelial cell senescence promotes the development of peritoneal dialysis (PD)-related peritoneal fibrosis. We previously revealed that Brahma-related gene 1 (BRG1) is increased in peritoneal fibrosis yet its role in modulating peritoneal mesothelial cell senescence is still unknown. This study evaluated the mechanism of BRG1 in peritoneal mesothelial cell senescence and peritoneal fibrosis using BRG1 knockdown mice, primary peritoneal mesothelial cells and human peritoneal samples from PD patients. The augmentation of BRG1 expression accelerated peritoneal mesothelial cell senescence, which attributed to mitochondrial dysfunction and mitophagy inhibition. Mitophagy activator salidroside rescued fibrotic responses and cellular senescence induced by BRG1. Mechanistically, BRG1 was recruited to oxidation resistance 1 (OXR1) promoter, where it suppressed transcription of OXR1 through interacting with forkhead box protein p2. Inhibition of OXR1 abrogated the improvement of BRG1 deficiency in mitophagy, fibrotic responses and cellular senescence. In a mouse PD model, BRG1 knockdown restored mitophagy, alleviated senescence and ameliorated peritoneal fibrosis. More importantly, the elevation level of BRG1 in human PD was associated with PD duration and D/P creatinine values. In conclusion, BRG1 accelerates mesothelial cell senescence and peritoneal fibrosis by inhibiting mitophagy through repression of OXR1. This indicates that modulating BRG1-OXR1-mitophagy signaling may represent an effective treatment for PD-related peritoneal fibrosis.


Asunto(s)
Diálisis Peritoneal , Fibrosis Peritoneal , Animales , Humanos , Ratones , Senescencia Celular/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/genética , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/patología , Peritoneo/metabolismo , Peritoneo/patología
11.
Angew Chem Int Ed Engl ; 63(20): e202403140, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38393614

RESUMEN

The rising prevalence of global antibiotic resistance evokes the urgent need for novel antimicrobial candidates. Cationic lipopeptides have attracted much attention due to their strong antimicrobial activity, broad-spectrum and low resistance tendency. Herein, a library of fluoro-lipopeptide amphiphiles was synthesized by tagging a series of cationic oligopeptides with a fluoroalkyl tail via a disulfide spacer. Among the lipopeptide candidates, R6F bearing six arginine moieties and a fluorous tag shows the highest antibacterial activity, and it exhibits an interesting fluorine effect as compared to the non-fluorinated lipopeptides. The high antibacterial activity of R6F is attributed to its excellent bacterial membrane permeability, which further disrupts the respiratory chain redox stress and cell wall biosynthesis of the bacteria. By co-assembling with lipid nanoparticles, R6F showed high therapeutic efficacy and minimal adverse effects in the treatment of MRSA-induced sepsis and chronic wound infection. This work provides a novel strategy to design highly potent antibacterial peptide amphiphiles for the treatment of drug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Sepsis , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Animales , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Tensoactivos/química , Tensoactivos/farmacología , Tensoactivos/síntesis química , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/uso terapéutico
12.
Plant Physiol ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366641

RESUMEN

Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid (NPA) did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid (NAA) on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.

13.
J Am Chem Soc ; 146(2): 1612-1618, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170906

RESUMEN

Amino acid ionic liquids (AAILs) are promising green materials for CO2 capture and conversion due to their large chemical structural tunability. However, the structural understanding of the AAILs underlying the CO2 reaction dynamics remains uncertain. Herein, we examine the steric effects of AAIL anions with various chemical structures on CO2 capture behavior. Based on ab initio free-energy sampling, we assess reaction mechanisms for carbamate formation via a two-step reaction pathway with a zwitterion intermediate undergoing dynamic proton transfer. Our results show that free-energy barriers for carbamate formation can be significantly reduced as the degree of steric hindrance of the anions decreases. Further analyses reveal that reduced steric hindrance of anions causes markedly stronger intermolecular interactions between zwitterion and anions, leading to an increased kinetically favorable intermolecular proton transfer for carbamate production. We also describe the correlation strength between intramolecular interactions within the zwitterion and intermolecular interactions between the zwitterion and anions. We conclude that the favored structural flexibility due to the less steric hindrance of the zwitterion leads to enhanced intermolecular interactions, facilitating proton transfer to nearby AAIL anions for carbamate formation. Our study provides invaluable insight into the influence of various degrees of steric hindrance of the AAIL anions governing CO2 chemisorption. These findings may aid in the design of optimal AAIL solvents for the CO2 capture process.

14.
J Integr Neurosci ; 23(1): 22, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38287857

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive technique that has demonstrated potential in modulating cortical neuron excitability. The objective of this paper is to investigate the effects of tDCS on characteristic parameters of brain functional networks and muscle synergy, as well as to explore its potential for enhancing motor performance. METHODS: By applying different durations of tDCS on the motor cortex of the brain, the 32-lead electroencephalogram (EEG) of the cerebral cortex and 4-lead electromyography (EMG) signals of the right forearm were collected for 4 typical hand movements which are commonly used in rehabilitation training, including right-hand finger flexion, finger extension, wrist flexion, and wrist extension. RESULTS: The study showed that tDCS can enhance the brain's electrical activity in the beta band of the C3 node of the cerebral cortex during hand movements. Furthermore, the structure of muscle synergy remains unaltered; however, the associated muscle activity is amplified (p < 0.05). CONCLUSIONS: Based on the study results, it can be inferred that tDCS enhances the control strength between the motor area of the cerebral cortex and the muscles during hand movements.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Estimulación Transcraneal de Corriente Directa/métodos , Músculos , Mano , Encéfalo , Corteza Motora/fisiología , Estimulación Magnética Transcraneal
15.
J Ethnopharmacol ; 324: 117704, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176664

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and arthritic pain. Sinomenine (SIN), derived from the rhizome of Chinese medical herb Qing Teng (scientific name: Sinomenium acutum (Thunb.) Rehd. Et Wils), has a longstanding use in Chinese traditional medicine for treating rheumatoid arthritis. It has been shown to possess anti-inflammatory, analgesic, and immunosuppressive effects with minimal side-effects clinically. However, the mechanisms governing its effects in treatment of joint pathology, especially on fibroblast-like synoviocytes (FLSs) dysfunction, and arthritic pain remains unclear. AIM: This study aimed to investigate the effect and underlying mechanism of SIN on arthritic joint inflammation and joint FLSs dysfunctions. MATERIALS AND METHODS: Collagen-induced arthritis (CIA) was induced in rats and the therapeutic effects of SIN on joint pathology were evaluated histopathologically. Next, we conducted a series of experiments using LPS-induced FLSs, which were divided into five groups (Naïve, LPS, SIN 10, 20, 50 µg/ml). The expression of inflammatory factors was measured by qPCR and ELISA. The invasive ability of cells was detected by modified Transwell assay and qPCR. Transwell migration and cell scratch assays were used to assess the migration ability of cells. The distribution and content of relevant proteins were observed by immunofluorescence and laser confocal microscopy, as well as Western Blot and qPCR. FLSs were transfected with plasmids (CRMP2 T514A/D) to directly modulate the post-translational modification of CRMP2 protein and downstream effects on FLSs function was monitored. RESULTS: SIN alleviated joint inflammation in rats with CIA, as evidenced by improvement of synovial hyperplasia, inflammatory cell infiltration and cartilage damage, as well as inhibition of pro-inflammatory cytokines release from FLSs induced by LPS. In vitro studies revealed a concentration-dependent suppression of SIN on the invasion and migration of FLSs induced by LPS. In addition, SIN downregulated the expression of cellular CRMP2 that was induced by LPS in FLSs, but increased its phosphorylation at residue T514. Moreover, regulation of pCRMP2 T514 by plasmids transfection (CRMP2 T514A/D) significantly influenced the migration and invasion of FLSs. Finally, SIN promoted nuclear translocation of pCRMP2 T514 in FLSs. CONCLUSIONS: SIN may exert its anti-inflammatory and analgesic effects by modulating CRMP2 T514 phosphorylation and its nuclear translocation of FLSs, inhibiting pro-inflammatory cytokine release, and suppressing abnormal invasion and migration. Phosphorylation of CRMP2 at the T514 site in FLSs may present a new therapeutic target for treating inflammatory joint's destruction and arthritic pain in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Morfinanos , Sinoviocitos , Ratas , Animales , Fosforilación , Lipopolisacáridos/farmacología , Movimiento Celular , Artritis Reumatoide/patología , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , Citocinas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Fibroblastos , Dolor/tratamiento farmacológico , Células Cultivadas , Proliferación Celular
16.
Small ; 20(14): e2305928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37986102

RESUMEN

Information encryption platforms with reliable encryption performance, excellent mechanical performance, and high water retention capacity are highly desired. In this study, a tough double-network hydrogel is designed using the first network of a polyion complex containing lanthanide complexes via one-pot polymerization and the second network of a poly (N-hydroxyethyl acrylamide) (PHEAA) obtained by deep eutectic solvent (DES)-assisted introduction and subsequent photopolymerization. In this system, the pH-induced shape memory function and pH-/wavelength-dependent fluorescence allow the use of the prepared hydrogel as a dual-encryption platform. Owing to its high response reversibility, the hydrogel-based platform exhibits both a high security level and the advantages of rewritability, reprogrammability, and reusability. Additionally, the excellent mechanical properties and water retention capacity owing to the solvent exchange process involving the low-volatility solvent DES and the resulting introduction of the second network of PHEAA offer high practical application value for the hydrogel-based dual encryption platform, demonstrating its potential for information security protection.

17.
Transl Res ; 266: 68-83, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37995969

RESUMEN

Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed ß-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce ß-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and ß-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/ß-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the ß-catenin-mediated transcription complex by regulating PKA and PKM2 function.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Insuficiencia Renal Crónica , Humanos , Ratones , Animales , Podocitos/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Factores de Transcripción/genética , Proteinuria/genética , Proteinuria/metabolismo , Nefropatías Diabéticas/metabolismo , Insuficiencia Renal Crónica/metabolismo , Proteínas de la Membrana , Proteínas de Unión al ARN/metabolismo
18.
Ther Apher Dial ; 28(2): 255-264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37873689

RESUMEN

INTRODUCTION: To assess the relationship between the rate of residual renal function (RRF) decline in the first year and all-cause and cardiovascular mortality in peritoneal dialysis (PD) patients. METHODS: Incident PD patients were divided into two groups by the corresponding RRF decline value, when hazard ratio (HR) = 1 was found by the restricted cubic spline. The associations of rate of decline of RRF in the first year with mortality were evaluated. RESULTS: Of 497 PD patients, 122 patients died. After adjusting for confounding factors, patients in fast-decline group had a significant increase risk of all-cause and cardiovascular mortality (HR: 1.97 and 2.09, respectively). Each 0.1-mL/min/1.73 m2 /month decrease in RRF in the first year of PD was associated with a 19% and 20% higher risk of all-cause and cardiovascular mortality, respectively. CONCLUSIONS: Faster decline of RRF in the first year was independently associated with all-cause and cardiovascular mortality in PD patients.


Asunto(s)
Enfermedades Cardiovasculares , Fallo Renal Crónico , Diálisis Peritoneal , Humanos , Tasa de Filtración Glomerular , Riñón , Enfermedades Cardiovasculares/epidemiología
19.
Ren Fail ; 45(2): 2290927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152048

RESUMEN

OBJECTIVES: Network pharmacology and molecular docking were used to predict endogenous active metabolites with protective effects in diabetic kidney disease (DKD). METHODS: We utilized metabolomics to screen differentially expressed metabolites in kidney tissues of mice with type 2 DKD and predicted potential targets using relevant databases. The interaction network between endogenous active metabolites and target proteins was established by integrating differentially expressed metabolites and proteins associated with DKD identified through proteomics. Gene ontology (GO) and signaling pathway enrichment analysis were performed. The biological functions of the active candidate metabolites and their effects on downstream pathways were also verified. RESULTS: Metabolomics revealed 130 differentially expressed metabolites. Through co-expression network analysis coupled with the investigation of differentially expressed proteins in proteomics, 2-hydroxyphenylpropionylglycine (2-HPG) emerged as a key regulator of DKD. 2-HPG was found to modulate the progression of DKD by regulating the conformation and activity of synaptophysin 1 (SYNJ1), with a correlation coefficient of 0.974. In vivo experiments revealed that SYNJ1 expression was significantly downregulated in the Macroalbuminuria Group compared to the Control Group and negatively correlated with proteinuria (r = -0.7137), indicating its important role in DKD progression. Immunofluorescence demonstrated that treatment with 2-HPG restores the expression of the foot process marker protein Wilms tumor-1 (WT-1) in podocytes injured by high glucose levels. Western blot and polymerase chain reaction support the involvement of SYNJ1 in this process. CONCLUSIONS: This study demonstrated the significance of the 2-HPG/SYNJ1 signaling axis in safeguarding the foot process of podocytes in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Animales , Ratones , Nefropatías Diabéticas/genética , Simulación del Acoplamiento Molecular , Farmacología en Red , Glomérulos Renales/metabolismo , Podocitos/metabolismo
20.
Animals (Basel) ; 13(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958061

RESUMEN

Intrauterine growth restriction (IUGR) is a common perinatal complication in animal reproduction, with long-lasting negative effects on neonates and postnatal animals, which seriously negatively affects livestock production. In this study, we aimed to identify potential genes associated with the diagnosis of IUGR through bioinformatics analysis. Based on the 73 differentially expressed related genes obtained by differential analysis and weighted gene co-expression network analysis, we used three machine learning algorithms to identify 4 IUGR-related hub genes (IUGR-HGs), namely, ADAM9, CRYL1, NDP52, and SERPINA7, whose ROC curves showed that they are a good diagnostic target for IUGR. Next, we identified two molecular subtypes of IUGR through consensus clustering analysis and constructed a gene scoring system based on the IUGR-HGs. The results showed that the IUGR score was positively correlated with the risk of IUGR. The AUC value of IUGR scoring accuracy was 0.970. Finally, we constructed a new artificial neural network model based on the four IUGR-HGs to diagnose sheep IUGR, and its accuracy reached 0.956. In conclusion, the IUGR-HGs we identified provide new potential molecular markers and models for the diagnosis of IUGR in sheep; they can better diagnose whether sheep have IUGR. The present findings provide new perspectives on the diagnosis of IUGR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA