Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Food Chem ; 461: 140829, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39146685

RESUMEN

Soybean could greatly improve stability of quinoa milk substitute. However, the key compound and underlying mechanisms remained unclear. Here we showed that soybean protein was the key component for improving quinoa milk substitute stability but not oil or okara. Supplementary level of soybean protein at 0%, 2%, 4%, and 8% of quinoa (w/w) was optimized. Median level at 4% could effectively enhance physical stability, reduce particle size, narrow down particle size distribution, and decrease apparent viscosity of quinoa milk substitute. Microscopic observation further confirmed that soybean protein could prevent phase separation. Besides, soybean protein showed increased surface hydrophobicity. Molecular docking simulated that soybean protein but not quinoa protein, could provide over 10 anchoring points for the most abundant quinoa vanillic acid, through hydrogen bond and Van-der-Waals. These results contribute to improve stability of quinoa based milk substitute, and provide theoretical basis for the interaction of quinoa phenolics and soybean protein.

2.
Eur J Radiol ; 178: 111656, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098252

RESUMEN

PURPOSE: To investigate whether longitudinal changes in multiparametric MRI can predict early response to neoadjuvant chemotherapy (NAC) for HER2-positive breast cancer (BC) and to further establish quantitative models based on these features. METHODS: A total of 164 HER2-positive BC patients from three centers were included. MRI was performed at baseline and after two cycles of NAC (early post-NAC). Clinicopathological characteristics were enrolled. MRI features were evaluated at baseline and early post-NAC, as well as longitudinal changes in multiparametric MRI, including changes in the largest diameter (LD) of the tumor (ΔLD), apparent diffusion coefficient (ADC) values (ΔADC), and time-signal intensity curve (TIC) (ΔTIC). The patients were divided into a training set (n = 95), an internal validation set (n = 31), and an independent external validation set (n = 38). Univariate and multivariate logistic regression analyses were used to identify the independent indicators of pCR, which were then used to establish the clinicopathologic model and combined model. The AUC was used to evaluate the predictive power of the different models and calibration curves were used to evaluate the consistency of the prediction of pCR in different models. Additionally, decision curve analysis (DCA) was employed to determine the clinical usefulness of the different models. RESULTS: Two models were enrolled in this study, including the clinicopathologic model and the combined model. The LD at early post-NAC (OR=0.913, 95 % CI=0.953-0.994 p = 0.026), ΔADC (OR=1.005, 95 % CI=1.005-1.008, p = 0.007), and ΔTIC (OR=3.974, 95 % CI=1.276-12.358, p = 0.017) were identified as the best predictors of NAC response. The combined model constructed by the combination of LD at early post-NAC, ΔADC, and ΔTIC showed good predictive performance in the training set (AUC=0.87), internal validation set (AUC=0.78), and external validation set (AUC=0.79), which performed better than the clinicopathologic model in all sets. CONCLUSIONS: The changes in multiparametric MRI can predict early treatment response for HER2-positive BC and may be helpful for individualized treatment planning.


Asunto(s)
Neoplasias de la Mama , Imágenes de Resonancia Magnética Multiparamétrica , Terapia Neoadyuvante , Receptor ErbB-2 , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Receptor ErbB-2/metabolismo , Resultado del Tratamiento , Quimioterapia Adyuvante , Anciano , Valor Predictivo de las Pruebas , Estudios Longitudinales
3.
Psychol Res ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190157

RESUMEN

Decisions about a current stimulus are influenced by previously encountered stimuli, leading to sequential bias. However, the specific processing levels at which serial dependence emerges remain unclear. Despite considerable evidence pointing to contributions from perceptual and post-perceptual processes, as well as response carryover effects impacting subsequent judgments, research into how different task measurements affect sequential dependencies is limited. To address this gap, the present study investigated the role of task type in shaping sequential effects in time perception, employing a random-dot kinematogram (RDK) in a post-cue paradigm. Participants had to remember both the duration and the direction of the RDK movement and perform the task based on a post-cue, which was equally likely to be direction or duration. To delineate the task type, we employed the temporal bisection task in Experiment 1 and the duration reproduction task in Experiment 2. Both experiments revealed a significant sequential bias: durations were perceived as longer following longer previous durations, and vice versa. Intriguingly, the sequential effect was enhanced in the reproduction task following the same reproduction task (Experiment 2), but did not show significant variation by the task type in the bisection task (Experiment 1). Moreover, comparable response carryover effects were observed across two experiments. We argue that the differential impacts of task types on sequential dependence lies in the involvement of memory reactivation process in the decision stage, while the post-decision response carryover effect may reflect the assimilation by subjective, rather than objective, durations, potentially linking to the sticky pacemaker rate and/or decisional inertia.

4.
Adv Clin Exp Med ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136329

RESUMEN

BACKGROUND: The incidence of composite endpoint of early safety (CEES) after transcatheter aortic valve replacement (TAVR) has been a topic of focus within the cardiovascular field due to its impact on long-term patient outcomes. Timely prophylactic interventions are crucial for patients identified as high risk for CEES through preoperative risk stratification. OBJECTIVES: This study aimed to explore the connection between inflammatory and nutritional markers, specifically the neutrophil-to-lymphocyte ratio (NLR) and prognostic nutritional index (PNI), and CEES occurrence. MATERIAL AND METHODS: A cohort of 134 patients undergoing TAVR in a single center was studied. The study endpoint was the occurrence of CEES, which was defined according to the Valve Academic Research Consortium 3. RESULTS: The CEES was reached in 25.4% of patients at 30 days. A high NLR was associated with a 5.55-fold increased risk of CEES (95% confidence interval (95% CI): 1.52-20.29; p < 0.05), while a low PNI was linked to a 4.43-fold increased risk (95% CI: 1.55-12.65; p < 0.01). Combining NLR and PNI provided additional risk stratification for high-risk patients (hazard ratio (HR), 95% CI: 2.24-43.37; p < 0.005). CONCLUSIONS: A high NLR and low PNI were shown to be significant predictors of CEES following TAVR. These findings underscore the significance of NLR and PNI in the risk assessment of TAVR patients, offering valuable insights for preventive measures.

5.
Br J Psychol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133516

RESUMEN

Our current perception and decision-making are shaped by recent experiences, a phenomenon known as serial dependence. While serial dependence is well-documented in visual perception and has been recently explored in time perception, their functional similarities across non-temporal and temporal domains remain elusive, particularly in relation to task relevance and working memory load. To address this, we designed a unified experimental paradigm using coherent motion stimuli to test both direction and time reproduction. The direction and time tasks were randomly mixed across trials. Additionally, we introduced pre-cue versus post-cue settings in separate experiments to manipulate working memory load during the encoding phase. We found attractive biases in time reproduction but repulsive biases in direction estimation. Notably, the temporal attraction was more pronounced when the preceding task was also time-related. In contrast, the direction repulsion remained unaffected by the nature of the preceding task. Additionally, both attractive and repulsive biases were enhanced by the post-cue compared to the pre-cue. Our findings suggest that opposing sequential effects in non-temporal and temporal domains may originate from different processing stages linked to sensory adaptation and post-perceptual processes involving working memory.

6.
Sci Total Environ ; 948: 174655, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39004375

RESUMEN

Microplastics (MPs) are widely present in terrestrial ecosystems. However, how MPs impact carbon (C) and nitrogen (N) cycling within plant-soil system is still poorly understood. Here, we conducted a meta-analysis utilizing 3338 paired observations from 180 publications to estimate the effects of MPs on plant growth (biomass, nitrogen content, nitrogen uptake and nitrogen use efficiency), change in soil C content (total carbon (TC), soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC)), C losses (carbon dioxide (CO2) and methane), soil N content (total nitrogen, dissolved organic nitrogen, microbial biomass nitrogen, total dissolve nitrogen, ammonium, nitrate (NO3--N) and nitrite) and nitrogen losses (nitrous oxide, ammonia (NH3) volatilization and N leaching) comprehensively. Results showed that although MPs significantly increased CO2 emissions by 25.7 %, they also increased TC, SOC, MBC, DOC and CO2 by 53.3 %, 25.4 %, 19.6 % and 24.7 %, respectively, and thus increased soil carbon sink capacity. However, MPs significantly decreased NO3--N and NH3 volatilization by 14.7 % and 43.3 %, respectively. Meanwhile, MPs significantly decreased plant aboveground biomass, whereas no significant changes were detected in plant belowground biomass and plant N content. The impacts of MPs on soil C, N and plant growth varied depending on MP types, sizes, concentrations, and experimental durations, in part influenced by initial soil properties. Overall, although MPs enhanced soil carbon sink capacity, they may pose a significant threat to future agricultural productivity.


Asunto(s)
Microplásticos , Ciclo del Nitrógeno , Nitrógeno , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Ciclo del Carbono , Carbono , Plantas , Monitoreo del Ambiente , Ecosistema
7.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063131

RESUMEN

The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.


Asunto(s)
Autofagia , Diferenciación Celular , Células Madre Embrionarias Humanas , Proteostasis , Humanos , Autofagia/genética , Células Madre Embrionarias Humanas/metabolismo , Diferenciación Celular/genética , Endopeptidasas/metabolismo , Endopeptidasas/genética , Técnicas de Silenciamiento del Gen
8.
Toxicon ; 248: 108040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39038664

RESUMEN

As a traditional tonic Chinese medicine, Polygonum multiflorum is widely used in clinical practice. However, with the deepening of modern pharmacological research, its drug toxicity, especially hepatotoxicity, has become increasingly prominent. Based on a large number of clinical and experimental evidence, it has been confirmed that Polygonum multiflorum and its main active ingredients such as anthraquinones and diphenylethylene glucoside can cause different degrees of hepatotoxicity. Further studies have shown that the toxicological mechanisms involved in the hepatotoxicity of different extracts and components of Polygonum multiflorum may include oxidative phosphorylation, bile acid excretion, different metabolic pathways, genetic and metabolic factors, immune homeostasis, etc. By sorting out and summarizing the literature related to hepatotoxicity of Polygonum multiflorum in recent years, this paper discussed the hepatotoxicity mechanism of Polygonum multiflorum and its main components and some contradictions in related reports.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fallopia multiflora , Fallopia multiflora/química , Humanos , Medicamentos Herbarios Chinos/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Antraquinonas/toxicidad , Medicina Tradicional China , Animales , Polygonum/química
9.
Food Chem ; 459: 140315, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38986203

RESUMEN

Casein, the major allergen in cow's milk, presents a significant challenge in providing nutritional support for children with allergies. To address this issue, we investigated a composite enzyme, comprising papain and chymotrypsin, to reduce the allergenicity of casein. Enzymatic hydrolysis induced substantial structural changes in casein, diminishing its affinity for specific IgE and IgG antibodies. Additionally, in a BALB/c mouse model, casein hydrolysate alleviated allergic symptoms, evidenced by lower serum IgE and IgG levels, reduced plasma histamine, and decreased Th2 cytokine release during cell co-culture. Peptidomic analysis revealed a 52.38% and 60% reduction in peptides containing IgE epitopes in casein hydrolyzed by the composite enzyme compared to papain and chymotrypsin, respectively, along with a notable absence of previously reported T cell epitopes. These results demonstrate the potential of enzyme combinations to enhance the efficiency of epitope destruction in allergenic proteins, providing valuable insights into the development of hypoallergenic dairy products.


Asunto(s)
Alérgenos , Caseínas , Quimotripsina , Hipersensibilidad a la Leche , Papaína , Animales , Bovinos , Femenino , Humanos , Ratones , Alérgenos/inmunología , Alérgenos/química , Caseínas/inmunología , Caseínas/química , Quimotripsina/química , Quimotripsina/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Inmunoglobulina E/inmunología , Ratones Endogámicos BALB C , Leche/química , Leche/inmunología , Hipersensibilidad a la Leche/inmunología , Hipersensibilidad a la Leche/prevención & control , Papaína/inmunología , Papaína/química
10.
RSC Adv ; 14(27): 19550-19559, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38895524

RESUMEN

Monoclonal antibodies (mAbs) are pivotal therapeutic agents for various diseases, and effective treatment hinges on attaining a specific threshold concentration of mAbs in patients. With the rising adoption of combination therapy involving multiple mAbs, there arises a clinical demand for multiplexing assays capable of measuring the concentrations of these mAbs. However, minimizing the complexity of serum samples while achieving rapid and accurate quantification is difficult. In this work, we introduced a novel method termed nano-surface and molecular orientation limited (nSMOL) proteolysis for the fragment of antigen binding (Fab) region-selective proteolysis of co-administered trastuzumab and pertuzumab based on the pore size difference between the protease nanoparticles (∼200 nm) and the resin-captured antibody (∼100 nm). The hydrolyzed peptide fragments were then quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this process, the digestion time is shortened, and the produced digestive peptides are greatly reduced, thereby minimizing sample complexity and increasing detection accuracy. Assay linearity was confirmed within the ranges of 0.200-200 µg mL-1 for trastuzumab and 0.300-200 µg mL-1 for pertuzumab. The intra- and inter-day precision was within 9.52% and 8.32%, except for 12.5% and 10.8% for the lower limit of quantitation, and the accuracy (bias%) was within 6.3%. Additionally, other validation parameters were evaluated, and all the results met the acceptance criteria of the guiding principles. Our method demonstrated accuracy and selectivity for the simultaneous determination of trastuzumab and pertuzumab in clinical samples, addressing the limitation of ligand binding assays incapable of simultaneously quantifying mAbs targeting the same receptor. This proposed assay provides a promising technical approach for realizing clinical individualized precise treatment, especially for co-administered mAbs.

11.
Front Public Health ; 12: 1343550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883192

RESUMEN

Introduction: The precise associations between temperature-related indices and mental and behavioral disorders (MBDs) have yet to be fully elucidated. Our study aims to ascertain the most effective temperature-related index and assess its immediate impact on emergency ambulance dispatches (EADs) due to MBDs in Shenzhen, China. Methods: EADs data and meteorological data from January 1, 2013, to December 31, 2020, in Shenzhen were collected. Distributed lag non-linear models (DLNMs) were utilized to examine the non-linear and lagged effects of temperature-related indices on EADs due to MBDs. The Quasi Akaike Information criterion (QAIC) was used to determine the optimal index after standardizing temperature-related indices. After adjusting for confounding factors in the model, we estimated the immediate and cumulative effects of temperature on EADs due to MBDs. Results: The analysis of short-term temperature effects on EADs due to MBDs revealed Humidex as the most suitable index. Referring to the optimal Humidex (3.2th percentile, 12.00°C), we observed a significant effect of Humidex over the threshold (34.6th percentile, 26.80°C) on EADs due to MBDs at lag 0-5. The cumulative relative risks for high temperature (90th percentile, 41.90°C) and extreme high temperature (99th percentile, 44.20°C) at lag 0-5 were 1.318 (95% CI: 1.159-1.499) and 1.338 (95% CI: 1.153-1.553), respectively. No significant cold effect was observed on EADs due to MBDs. Conclusion: High Humidex was associated with more EADs due to MBDs in subtropical regions. Health authorities should implement effective measures to raise public awareness of risks related to high temperature and protect vulnerable populations.


Asunto(s)
Ambulancias , Trastornos Mentales , Temperatura , Humanos , China , Ambulancias/estadística & datos numéricos , Trastornos Mentales/epidemiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Asesoramiento de Urgencias Médicas/estadística & datos numéricos
12.
Int J Biol Macromol ; 273(Pt 1): 132914, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844290

RESUMEN

Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.


Asunto(s)
Pinus taeda , Polisacáridos , Polisacáridos/metabolismo , Polisacáridos/química , Pinus taeda/metabolismo , Pinus taeda/crecimiento & desarrollo , Xilanos/metabolismo , Xilanos/química , Mananos/metabolismo , Mananos/química , Peso Molecular , Pared Celular/metabolismo , Pared Celular/química , Acetilación
13.
Biomater Sci ; 12(14): 3649-3658, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38857014

RESUMEN

Despite cisplatin's pivotal role in clinically proven anticancer drugs, its application has been hampered by severe side effects and a grim prognosis. Herein, we devised a glutathione (GSH)-responsive nanoparticle (PFS-NP) that integrates a disulfide bond-based amphiphilic polyphenol (PP-SS-DA), a dopamine-modified cisplatin prodrug (Pt-OH) and iron ions (Fe3+) through coordination reactions between Fe3+ and phenols. After entering cells, the responsively released Pt-OH and disulfide bonds eliminate the intracellular GSH, in turn disrupting the redox homeostasis. Meanwhile, the activated cisplatin elevates the intracellular H2O2 level through cascade reactions. This is further utilized to produce highly toxic hydroxyl radicals (˙OH) catalyzed by the Fe3+-based Fenton reaction. Thus, the amplified oxidative stress leads to immunogenic cell death (ICD), promoting the maturation of dendritic cells (DCs) and ultimately activating the anti-tumor immune system. This innovative cisplatin prodrug nanoparticle approach offers a promising reference for minimizing side effects and optimizing the therapeutic effects of cisplatin-based drugs.


Asunto(s)
Antineoplásicos , Cisplatino , Profármacos , Cisplatino/farmacología , Cisplatino/química , Cisplatino/administración & dosificación , Profármacos/química , Profármacos/farmacología , Profármacos/administración & dosificación , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Animales , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Nanopartículas/administración & dosificación , Células Dendríticas/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Línea Celular Tumoral , Hierro/química , Portadores de Fármacos/química , Fenoles/química , Fenoles/farmacología , Fenoles/administración & dosificación
14.
Angew Chem Int Ed Engl ; 63(35): e202406043, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866704

RESUMEN

Metal atom catalysts have been among the most important research objects due to their specific physical and chemical properties. However, precise control of the anchoring of metal atoms is still challenging to achieve. Cobalt and iridium atomic arrays formed sequentially ordered stable arrays in graphdiyne (GDY) triangular cavities depending on their intrinsic chemical properties and interactions. The success of this method was attributed to multifunctional integration of GDY, enabling selective growth from one to several atoms and various atomic densities. The bimetallic atom arrays show several advantages resulting from reducibility of acetylene bonds, space limiting effect, incomplete charge transfer between GDY and metal atoms, and sp-C hybridized triple bond skeleton. This well-designed system exhibits unprecedented oxygen evolution reaction (OER) performance with a mass activity of 2.6 A mgcat. -1 at a low overpotential of 300 mV, which is 216.6 times higher than the state-of-the-art IrO2 catalyst, and long-term stability.

15.
China CDC Wkly ; 6(23): 553-557, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38933663

RESUMEN

Introduction: Traditional methods for determining radiation dose in nuclear medicine include the Monte Carlo method, the discrete ordinate method, and the point kernel integration method. This study presents a new mathematical model for predicting the radiation dose rate in the vicinity of nuclear medicine patients. Methods: A new algorithm was created by combining the physical model of "cylinder superposition" of the human body with integral analysis to assess the radiation dose rate in the vicinity of nuclear medicine patients. Results: The model accurately predicted radiation dose rates within distances of 0.1-3.0 m, with a deviation of less than 11% compared to observed rates. The model demonstrated greater accuracy at shorter distances from the radiation source, with a deviation of only 1.55% from observed values at 0.1 m. Discussion: The model proposed in this study effectively represents the spatial and temporal distribution of the radiation field around nuclear medicine patients and demonstrates good agreement with actual measurements. This model has the potential to serve as a radiation dose rate alert system in hospital environments.

16.
Sci Total Environ ; 944: 173989, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38879023

RESUMEN

There is insufficient understanding of the spatio-temporal evolution of surface water-groundwater quality and hydraulic connection under both natural and human influences in urban river basins. To this end, this paper investigated the spatio-seasonal pattern of hydrochemical evolution and surface water-groundwater interaction in a typical urban river basin (Dahei River basin) based on isotopic and hydrochemical data of 132 water samples collected during three seasons (normal, wet and dry seasons). From the normal season to the wet season, surface water in the Dahei River basin was dominated by the impacts of evaporation and groundwater discharge processes. During this period, the precipitation and agricultural activities (canal irrigation) were frequent. Thus, groundwater was affected by irrigation infiltration of surface water and precipitation from high-altitude areas. From the wet season to the dry season, precipitation decreased and irrigation methods changed (canal irrigation → well irrigation). In this case, groundwater discharge had a stronger impact on surface water, and shallow groundwater was recharged by deep groundwater through the well irrigation. Under this hydrological pattern, the hydrochemical characteristics of surface water were mainly influenced by evaporation, human activities (agricultural irrigation and sewage treatment) and groundwater discharge. In contrast, the hydrochemical characteristics of groundwater were main influenced by water-rock interactions (dissolution of evaporites and silicates, and cation exchange) and human activities. This study contributed to a better understanding of the hydrochemical and hydrological processes in urban river basins and provided a theoretical basis for the sustainable management of water resources.

17.
Cell Res ; 34(7): 504-521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811766

RESUMEN

Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.


Asunto(s)
Translocador 2 del Nucleótido Adenina , Mitocondrias , Membranas Mitocondriales , ARN Bicatenario , Animales , Translocador 2 del Nucleótido Adenina/metabolismo , Translocador 2 del Nucleótido Adenina/genética , Humanos , ARN Bicatenario/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Ratones , Inmunidad Innata , Transporte de ARN , Células HEK293 , Ratones Endogámicos C57BL
18.
Foodborne Pathog Dis ; 21(8): 499-507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695190

RESUMEN

Trans-cinnamaldehyde (TC), a typical plant-derived compound, has been widely used in the control of foodborne pathogen contamination. Nevertheless, the risk associated with the occurrence of viable but nonculturable (VBNC) bacteria induced by TC remains unclear. The results of this study showed that Salmonella Enteritidis (S. Enteritidis) entered the VBNC state after being induced by TC at a minimum inhibitory concentration of 312.5 µg/mL and survived for at least 22 days under TC treatment. Enhanced resistance was found against heat treatment (75°C, 30 s), antibiotics (i.e., ampicillin, ceftriaxone sodium, chloramphenicol), and hydrogen peroxide (3%) in VBNC S. Enteritidis. A synergistic effect against VBNC S. Enteritidis occurred when TC was combined with acid treatment, including lactic acid and acetic acid (pH = 3.5). VBNC and resuscitated S. Enteritidis by sodium pyruvate treatment (100 mM) were found to retain the infectious ability to Caco-2 cells. Relative expression levels of the stress-related genes relA, spoT, ppx, lon, katG, sodA, dnaK, and grpE were upregulated in VBNC S. Enteritidis. Accumulation of reactive oxygen species (ROS) and protein aggregates was observed in VBNC cells. Besides, the resuscitation of VBNC cells was accompanied with clearance of ROS and protein aggregates. In summary, this study presents a comprehensive characterization of stress tolerance and resuscitation of VBNC S. Enteritidis induced by cinnamaldehyde, and the results provide useful information for the development of effective control strategy against VBNC pathogenic bacteria in food production.


Asunto(s)
Acroleína , Antibacterianos , Pruebas de Sensibilidad Microbiana , Salmonella enteritidis , Acroleína/análogos & derivados , Acroleína/farmacología , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/crecimiento & desarrollo , Humanos , Células CACO-2 , Antibacterianos/farmacología , Peróxido de Hidrógeno/farmacología , Viabilidad Microbiana/efectos de los fármacos , Microbiología de Alimentos , Calor , Ácido Acético/farmacología , Ácido Láctico/farmacología
19.
Materials (Basel) ; 17(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730859

RESUMEN

The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB2 particles, a controlled size characterization process has been explored. First, the extraction and drying processes for TiB2 particles were optimized. In the extraction process, alternated applications of magnetic stirring and normal ultrasound treatments were proven to accelerate the dissolution of the Al matrix in HCl solution. Furthermore, freeze-drying was found to minimize the agglomeration tendency among TiB2 particles, facilitating the acquisition of pure powders. Such powders were quantitatively made into an initial TiB2 suspension. Second, the chemical and physical dispersion technologies involved in initial TiB2 suspension were put into focus. Chemically, adding PEI (M.W. 10000) at a ratio of mPEI/mTiB2 = 1/30 into the initial suspension can greatly improve the degree of TiB2 dispersion. Physically, the optimum duration for high-energy ultrasound application to achieve TiB2 dispersion was 10 min. Overall, the corresponding underlying dispersion mechanisms were discussed in detail. With the combination of these chemical and physical dispersion specifications for TiB2 suspension, the bimodal size distribution of TiB2 was able to be characterized by NSA for the first time, and its number-average diameter was 111 ± 6 nm, which was reduced by 59.8% over the initial suspension. Indeed, the small-sized and large-sized peaks of the TiB2 particles characterized by NSA mostly match the results obtained from transmission electron microscopy and scanning electron microscopy, respectively.

20.
Neuroimage ; 294: 120640, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719154

RESUMEN

Attentional control, guided by top-down processes, enables selective focus on pertinent information, while habituation, influenced by bottom-up factors and prior experiences, shapes cognitive responses by emphasizing stimulus relevance. These two fundamental processes collaborate to regulate cognitive behavior, with the prefrontal cortex and its subregions playing a pivotal role. Nevertheless, the intricate neural mechanisms underlying the interaction between attentional control and habituation are still a subject of ongoing exploration. To our knowledge, there is a dearth of comprehensive studies on the functional connectivity between subsystems within the prefrontal cortex during attentional control processes in both primates and humans. Utilizing stereo-electroencephalogram (SEEG) recordings during the Stroop task, we observed top-down dominance effects and corresponding connectivity patterns among the orbitofrontal cortex (OFC), the middle frontal gyrus (MFG), and the inferior frontal gyrus (IFG) during heightened attentional control. These findings highlighting the involvement of OFC in habituation through top-down attention. Our study unveils unique connectivity profiles, shedding light on the neural interplay between top-down and bottom-up attentional control processes, shaping goal-directed attention.


Asunto(s)
Atención , Electroencefalografía , Habituación Psicofisiológica , Corteza Prefrontal , Humanos , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Atención/fisiología , Masculino , Femenino , Electroencefalografía/métodos , Habituación Psicofisiológica/fisiología , Adulto , Adulto Joven , Test de Stroop
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...