Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 195(3): 2289-2308, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466723

RESUMEN

The production of glutamine (Gln) from NO3- and NH4+ requires ATP, reducing power, and carbon skeletons. Plants may redirect these resources to other physiological processes using Gln directly. However, feeding Gln as the sole nitrogen (N) source has complex effects on plants. Under optimal concentrations, Arabidopsis (Arabidopsis thaliana) seedlings grown on Gln have similar primary root lengths, more lateral roots, smaller leaves, and higher amounts of amino acids and proteins compared to those grown on NH4NO3. While high levels of Gln accumulate in Arabidopsis seedlings grown on Gln, the expression of GLUTAMINE SYNTHETASE1;1 (GLN1;1), GLN1;2, and GLN1;3 encoding cytosolic GS1 increases and expression of GLN2 encoding chloroplastic GS2 decreases. These results suggest that Gln has distinct effects on regulating GLN1 and GLN2 gene expression. Notably, Arabidopsis seedlings grown on Gln have an unexpected gene expression profile. Compared with NH4NO3, which activates growth-promoting genes, Gln preferentially induces stress- and defense-responsive genes. Consistent with the gene expression data, exogenous treatment with Gln enhances disease resistance in Arabidopsis. The induction of Gln-responsive genes, including PATHOGENESIS-RELATED1, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1, WRKY54, and WALL ASSOCIATED KINASE1, is compromised in salicylic acid (SA) biosynthetic and signaling mutants under Gln treatments. Together, these results suggest that Gln may partly interact with the SA pathway to trigger plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glutamina , Raíces de Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Glutamina/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Resistencia a la Enfermedad/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Glutamato-Amoníaco Ligasa/metabolismo , Glutamato-Amoníaco Ligasa/genética
2.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996996

RESUMEN

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica Ectópica , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bacterias/metabolismo , Proteínas de Unión al ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...