RESUMEN
During liver regeneration, especially after a hepatectomy, hepatocytes experience significant lipid accumulation. These transiently accumulated lipids are generally believed to provide substrates for energy supply or membrane biomaterials for newly generated hepatocytes. Remarkably, a recent study found that acute lipid accumulation during regeneration can act as a signal for chromatin remodeling to regulate regeneration. Chen, Y.H., et al. identified MIER1 (mesoderm induction early response protein 1) as a crucial inhibitor of liver regeneration through in vivo CRISPR screening. MIER1 binds to and restrains cell cycle genes' expression. During liver regeneration, acute lipid accumulation suppresses MIER1 translation via the EIF2S pathway, resulting in transient down-regulation of MIER1 protein, which promotes cell cycle gene expression and liver regeneration. Interestingly, the researchers also found that the dynamic regulation of MIER1 was impaired in fatty and aging livers with chronic steatosis, while of knockout of MIER1 in these animals improved their regenerative capacity. In conclusion, this study provides valuable insights into the complex mechanisms underlying liver regeneration and highlights the potential therapeutic applications of targeting MIER1 for improving liver regeneration in disease states associated with impaired lipid homeostasis.
RESUMEN
Diabetic kidney disease (DKD), a severe complication of diabetes marked by deregulated glucose metabolism, remains enigmatic in its pathogenesis. Herein, we delved into the functional role of Dihydrolipoamide S-acetyltransferase (DLAT), a pivotal E2 component of the pyruvate dehydrogenase complex (PDC), in the context of DKD. Our findings revealed a downregulation of DLAT in the kidneys of diabetic patients, correlating inversely with kidney function. Parallel downregulation was observed in both high-fat diet/streptozotocin (HFD/STZ) and db/db mouse models, as well as in human proximal tubular epithelial cells (HK-2) cultured under hyperglycemic conditions. To further elucidate the role of endogenous DLAT in DKD, we employed genetic ablation of Dlat in mouse models. Dlat haploinsufficient mice exhibited exacerbated renal dysfunction, structural damage, fibrosis, and mitochondrial dysfunction under DKD conditions. Consistent with these findings, modulation of DLAT expression in HK-2 cells highlighted its influence on fibrosis, with overexpression attenuating Fibronectin and Collagen I levels, while downregulation exacerbated fibrosis. Mechanistically, we discovered that DLAT activates mitochondria autophagy through the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby mitigating mitochondrial dysfunction associated with DKD progression. Inhibition of AMPK abrogated the protective effects of DLAT against mitochondrial dysfunction and DKD. Notably, we identified Hyperforin (HPF), a phytochemical, as a potential therapeutic agent. HPF activates DLAT and AMPK, subsequently ameliorating renal dysfunction, injuries, and fibrosis in both in vivo and in vitro models. In summary, our study underscores the pivotal role of DLAT and AMPK in kidney health and highlights the therapeutic potential of HPF in treating DKD.
RESUMEN
INTRODUCTION: Previous studies have examined the correlation between paroxetine concentrations and therapeutic efficacy in patients diagnosed with major depressive disorder (MDD), but findings have been contradictory. AIMS: This study aimed to investigate the relationships among plasma concentrations, severity of symptoms, and adverse drug reactions (ADRs) to optimize individual dosing. METHODS: Eighty-seven MDD patients, after completing treatment with paroxetine, were divided into low-concentration (LC, n = 38), medium-concentration (MC, n = 27), and high-concentration (HC, n = 22) groups, based on cutoff value concentrations with the 50% response rate and the laboratory alert level from the 2017 consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology. The severity of depression and anxiety was evaluated using a 17-item Hamilton Depression Scale (HAMD-17) and Hamilton Anxiety Scale (HAMA), respectively. Dosage, plasma concentrations, scale scores, and ADRs were recorded across the three groups at different treatment stages to define the therapeutic reference range. RESULTS: The 4-week plasma concentration of paroxetine (65.00 ng/mL) could predict the clinical response in MDD patients at 8 weeks. Symptom relief in patients with 4-week paroxetine concentrations ranging from 65.00 to 120.00 ng/mL at 8 weeks was greater than in those with concentrations below 65.00 ng/mL, with no significant difference observed above this range. In addition, more cases of liver injury and weight gain were observed in patients with high paroxetine concentrations. CONCLUSION: Our results support that early paroxetine concentration may predict clinical efficacy and the incidence of ADRs, thus improving individual dosing regimens for MDD patients.
RESUMEN
Diabetic Nephropathy (DN) has become the leading cause of end-stage renal disease worldwide. Studies have indicated that Transforming Growth Factor beta1 (TGFß1) is the most potent factor contributing to renal fibrosis, and understanding the exact pathogenic mechanism of renal fibrosis is crucial for alleviating the condition. Previous research has identified Yin Yang 1 (YY1) as an effective inhibitor of TGF-ß1. Our study, through dual-luciferase reporter gene assays and Western blot experiments, screened and obtained the small molecule compound Pdâ ¡. Subsequently, validation in a high-glucose-induced renal mesangial cell injury model showed that Pdâ ¡ treatment significantly increased the expression of YY1 protein and mRNA, while correspondingly reducing the expression of TGFß1 protein and mRNA. Dual-luciferase reporter gene assay results revealed that, compared to the control group, the luciferase transcription activity of YY1 molecules increased in the Pdâ ¡ treatment group, and the luciferase transcription activity of TGFß1 decreased. By further designing mutations in the binding sites between TGFß1 and YY1 on the promoter, transfecting fluorescent enzyme reporter gene plasmids with TGFß1 mutant promoter into mesangial cells damaged by high glucose, and then treating the cells with Pdâ ¡, it was observed that the luciferase transcription activity of TGFß1 did not decrease. Therefore, these results suggest that Pdâ ¡ may inhibit TGFß1 transcriptional activity by activating YY1, thereby slowing down the progression of diabetic nephropathy.
RESUMEN
Adipose tissue is a crucial metabolic organ in the human body. It stores and exerts distinct physiological functions in different body regions. Fat not only serves as a cushion and insulator but also stores energy and conveys endocrine signals within the body. There is a growing recognition that adipose tissue is an organ that is misunderstood and underestimated in contribution to human health and disease progression by regulating its size and functionality. In mammals, the adipose tissue reservoir consists of three functionally distinct types of fat: white adipose tissue (WAT), brown adipose tissue (BAT), and beige or inducible brown adipose tissue (iWAT), which exhibits thermogenic capabilities intermediate between the other two. Fat in different depots exhibits considerable differences in origin, characteristics, and functions. They vary not only in adipocyte lineage, properties, thermogenesis, and endocrine functions but also in their immunological functions. In a recent study published in Nature Metabolism, Zhang et al. investigated the role of JunB in the thermogenic capacity of adipocytes and its significance in obesity and metabolic disorders. The study revealed that JunB expression in BAT coexists with both low and high thermogenic adipocytes, indicating a fundamental feature of heterogeneity and plasticity within BAT. In summary, this article demonstrates that research targeting JunB holds promise for improving diet-induced obesity and insulin resistance, offering new avenues for treating metabolic disorders.
RESUMEN
Obstructive sleep apnea syndrome (OSAS), characterized by chronic intermittent hypoxia (CIH), is an independent risk factor for aggravating non-alcoholic steatohepatitis (NASH). The prevailing mouse model employed in CIH research is inadequate for the comprehensive exploration of the impact of CIH on NASH development due to reduced food intake observed in CIH-exposed mice, which deviates from human responses. To address this issue, a pair-feeding investigation with CIH-exposed and normoxia-exposed mice is conducted. It is revealed that CIH exposure aggravates DNA damage, leading to hepatic fibrosis and inflammation. The analysis of genome-wide association study (GWAS) data also discloses the association between Eepd1, a DNA repair enzyme, and OSAS. Furthermore, it is revealed that CIH triggered selective autophagy, leading to the autophagic degradation of Eepd1, thereby exacerbating DNA damage in hepatocytes. Notably, Eepd1 liver-specific knockout mice exhibit aggravated hepatic DNA damage and further progression of NASH. To identify a therapeutic approach for CIH-induced NASH, a drug screening is conducted and it is found that Retigabine dihydrochloride suppresses CIH-mediated Eepd1 degradation, leading to alleviated DNA damage in hepatocytes. These findings imply that targeting CIH-mediated Eepd1 degradation can be an adjunctive approach in the treatment of NASH exacerbated by OSAS.
Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enfermedad del Hígado Graso no Alcohólico , Apnea Obstructiva del Sueño , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Autofagia/genética , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/metabolismo , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Estudio de Asociación del Genoma Completo , Daño del ADN/genéticaRESUMEN
BACKGROUND: Panic disorder (PD) is a common disabling condition characterized by recurrent panic attacks. Emotional and behavioral impairments are associated with functional connectivity (FC) and network abnormalities. We used the whole brain FC, modular networks, and graph-theory analysis to investigate extensive network profiles in PD. METHOD: The functional MRI data from 82 PD and 97 controls were included. Intrinsic FC between each pair of 160 regions, 6 intra-networks, and 15 inter-networks were analyzed. The topological properties were explored. RESULTS: PD patients showed altered FCs within the right insula, between frontal cortex-posterior cingulate cortex (PCC), frontal cortex-cerebellum, and PCC-occipital cortex (corrected P values < 0.001). Lower connections within the Sensorimotor Network (SMN) and SMN-Occipital Network (OCN) were detected (P values < 0.05). Various decreased global and local network features were found in PD (P values < 0.05). In addition, significant correlations were found between PD symptoms and nodal efficiency (Ne) in the insula (r = -0.273, P = 0.016), and the FC of the intra-insula (r = -0.226, P = 0.041). CONCLUSIONS: PD patients present with abnormal functional brain networks, especially the decreased FC and Ne within insula, suggesting that dysfunction of information integration plays an important role in PD.
RESUMEN
BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.
Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS: This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS: Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION: Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
RESUMEN
Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for cardiovascular and cerebrovascular disease owing to its close association with coagulant disturbances. However, the precise biological functions and mechanisms that connect coagulation factors to NAFLD pathology remain inadequately understood. Herein, with unbiased bioinformatics analyses followed by functional testing, we demonstrate that hepatic expression of coagulation factor VII (FVII) decreases in patients and mice with NAFLD/nonalcoholic steatohepatitis (NASH). By using adenovirus-mediated F7-knockdown and hepatocyte-specific F7-knockout mouse models, our mechanistic investigations unveil a noncoagulant function of hepatic FVII in mitigating lipid accumulation and lipotoxicity. This protective effect is achieved through the suppression of fatty acid uptake, orchestrated via the AKT-CD36 pathway. Interestingly, intracellular FVII directly interacts with AKT and PP2A, thereby promoting their association and triggering the dephosphorylation of AKT. Therapeutic intervention through adenovirus-mediated liver-specific overexpression of F7 results in noteworthy improvements in liver steatosis, inflammation, injury, and fibrosis in severely afflicted NAFLD mice. In conclusion, our findings highlight coagulation factor FVII as a critical regulator of hepatic steatosis and a potential target for the treatment of NAFLD and NASH.
Asunto(s)
Factor VII , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Factor VII/genética , Factor VII/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Childhood trauma and the amygdala play essential roles in major depressive disorder (MDD) mechanisms. However, the neurobiological mechanism among them remains unclear. Therefore, we explored the relationship among the amygdala subregion's abnormal functional connectivity (FC), clinical features, and childhood trauma in MDD. We obtained resting-state functional magnetic resonance imaging (fMRI) in 115 MDD patients and 91 well-matched healthy controls (HC). Amygdala subregions were defined according to the Human Brainnetome Atlas. The case vs. control difference in FCs was extracted. After controlling for age, sex, and education years, the mediations between the detected abnormal FCs and clinical features were analyzed, including the onset age of MDD and the Hamilton Depression Scale-24 (HAMD-24) reductive rate. Compared with HC subjects, we found, only the right amygdala subregions, namely the right medial amygdala (mAmyg.R) and the right lateral amygdala (lAmyg.R), showed a significant decrease in whole-brain FCs in MDD patients. Only childhood abuse experiences were significantly associated with amygdala subregion connectivity and clinical features in MDD patients. Additionally, The FCs between the mAmyg.R and extensive frontal, temporal, and subcortical regions mediated between the early life abuses and disease onset or treatment outcome. The findings indicate that the abnormal connectivity of the right amygdala subregions is involved in MDD's pathogenesis and clinical characteristics.