Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798584

RESUMEN

Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo consolidation therapy-a discrepancy that has never been explained. To investigate this, we treated a large cohort of neuroblastoma cell lines with RA and observed that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conducted genome-wide CRISPR knockout screens under RA treatment, which identified BMP signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA's overall potency. We then discovered that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA's ability to clear neuroblastoma cells specifically from the bone marrow, seemingly mimicking interactions between BMP and RA during normal development.

2.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38765999

RESUMEN

Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.

3.
Nat Commun ; 15(1): 4054, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744881

RESUMEN

Nuclear receptors are ligand-activated transcription factors that can often be useful drug targets. Unfortunately, ligand promiscuity leads to two-thirds of receptors remaining clinically untargeted. PXR is a nuclear receptor that can be activated by diverse compounds to elevate metabolism, negatively impacting drug efficacy and safety. This presents a barrier to drug development because compounds designed to target other proteins must avoid PXR activation while retaining potency for the desired target. This problem could be avoided by using PXR antagonists, but these compounds are rare, and their molecular mechanisms remain unknown. Here, we report structurally related PXR-selective agonists and antagonists and their corresponding co-crystal structures to describe mechanisms of antagonism and selectivity. Structural and computational approaches show that antagonists induce PXR conformational changes incompatible with transcriptional coactivator recruitment. These results guide the design of compounds with predictable agonist/antagonist activities and bolster efforts to generate antagonists to prevent PXR activation interfering with other drugs.


Asunto(s)
Receptor X de Pregnano , Receptor X de Pregnano/metabolismo , Receptor X de Pregnano/antagonistas & inhibidores , Humanos , Ligandos , Cristalografía por Rayos X , Células Hep G2 , Modelos Moleculares , Unión Proteica
4.
Genes Dis ; 11(4): 101079, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38560501

RESUMEN

CYP3A5 is a cytochrome P450 (CYP) enzyme that metabolizes drugs and contributes to drug resistance in cancer. However, it remains unclear whether CYP3A5 directly influences cancer progression. In this report, we demonstrate that CYP3A5 regulates glucose metabolism in pancreatic ductal adenocarcinoma. Multi-omics analysis showed that CYP3A5 knockdown results in a decrease in various glucose-related metabolites through its effect on glucose transport. A mechanistic study revealed that CYP3A5 enriches the glucose transporter GLUT1 at the plasma membrane by restricting the translation of TXNIP, a negative regulator of GLUT1. Notably, CYP3A5-generated reactive oxygen species were proved to be responsible for attenuating the AKT-4EBP1-TXNIP signaling pathway. CYP3A5 contributes to cell migration by maintaining high glucose uptake in pancreatic cancer. Taken together, our results, for the first time, reveal a role of CYP3A5 in glucose metabolism in pancreatic ductal adenocarcinoma and identify a novel mechanism that is a potential therapeutic target.

5.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561833

RESUMEN

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Asunto(s)
Neoplasias Óseas , Diterpenos , Osteosarcoma , Humanos , Proteína Quinasa C-alfa/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Osteosarcoma/metabolismo , Neoplasias Óseas/patología , Linfocitos T , Citocinas/metabolismo , Línea Celular Tumoral
6.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508144

RESUMEN

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Asunto(s)
Histona Demetilasas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteínas Oncogénicas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
7.
Expert Opin Drug Metab Toxicol ; 20(1-2): 9-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38251638

RESUMEN

INTRODUCTION: Pregnane X receptor (PXR) is a master xenobiotic sensor that transcriptionally controls drug metabolism and disposition pathways. PXR activation by pharmaceutical drugs, natural products, environmental toxins, etc. may decrease drug efficacy and increase drug-drug interactions and drug toxicity, indicating a therapeutic value for PXR antagonists. However, PXR's functions in physiological events, such as intestinal inflammation, indicate that PXR activators may be useful in certain disease contexts. AREAS COVERED: We review the reported roles of PXR in various physiological and pathological processes including drug metabolism, cancer, inflammation, energy metabolism, and endobiotic homeostasis. We then highlight specific cellular and chemical routes that modulate PXR activity and discuss the functional consequences. Databases searched and inclusive dates: PubMed, 1 January 1980 to 10 January 2024. EXPERT OPINION: Knowledge of PXR's drug metabolism function has helped drug developers produce small molecules without PXR-mediated metabolic liabilities, and further understanding of PXR's cellular functions may offer drug development opportunities in multiple disease settings.


Asunto(s)
Receptores de Esteroides , Humanos , Receptor X de Pregnano/metabolismo , Receptores de Esteroides/metabolismo , Inactivación Metabólica , Inflamación
8.
Nucleic Acids Res ; 52(4): 1661-1676, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38084912

RESUMEN

Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.


Asunto(s)
Azepinas , Receptor X de Pregnano , Triazoles , Azepinas/química , Azepinas/farmacología , Línea Celular Tumoral , Proliferación Celular , Citocromo P-450 CYP3A/genética , Proteínas Nucleares/metabolismo , Receptor X de Pregnano/química , Proteínas Proto-Oncogénicas c-myc/genética , Receptores Citoplasmáticos y Nucleares , Triazoles/química , Triazoles/farmacología , Humanos
9.
Blood ; 143(7): 619-630, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890156

RESUMEN

ABSTRACT: UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.


Asunto(s)
Proteínas de Homeodominio , Leucemia Mieloide Aguda , Humanos , Niño , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Factores de Transcripción , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética
10.
Acta Pharm Sin B ; 13(11): 4523-4534, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37969738

RESUMEN

Pregnane X receptor (PXR) is a ligand-activated nuclear receptor that transcriptionally upregulates drug-metabolizing enzymes [e.g., cytochrome P450 3A4 (CYP3A4)] and transporters. Although the regulation of PXR target genes is well-characterized, less is known about the regulation of PXR protein level. By screening an RNAi library, we identified the F-box-only protein 44 (FBXO44) as a novel E3 ligase for PXR. PXR abundance increases upon knockdown of FBXO44, and, inversely, decreases upon overexpression of FBXO44. Further analysis revealed that FBXO44 interacts with PXR, leading to its ubiquitination and proteasomal degradation, and we determined that the F-box associated domain of FBXO44 and the ligand binding domain of PXR are required for the functional interaction. In summary, FBXO44 regulates PXR protein abundance, which has downstream consequences for CYP3A4 levels and drug-drug interactions. The results of this study provide new insight into the molecular mechanisms that regulate PXR protein level and activity and suggest the importance of considering how modulating E3 ubiquitin ligase activities will affect PXR-mediated drug metabolism.

11.
Nat Commun ; 14(1): 7332, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957169

RESUMEN

Combination chemotherapy is crucial for successfully treating cancer. However, the enormous number of possible drug combinations means discovering safe and effective combinations remains a significant challenge. To improve this process, we conduct large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the most common extracranial pediatric solid tumor, where ~50% of high-risk patients do not survive. Our screen examines all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest existing drug combination screens. Using dense drug-drug rescreening, we find that the top CRISPR-nominated drug combinations are more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discover that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicin in vitro and in vivo using patient-derived xenograft (PDX) models. Our findings provide a valuable resource and demonstrate the feasibility of using targeted CRISPR knockout to discover combinations with common chemotherapeutics, a methodology with application across all cancers.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neuroblastoma , Humanos , Niño , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Técnicas de Inactivación de Genes , Combinación de Medicamentos , Línea Celular Tumoral
12.
ACS Med Chem Lett ; 14(10): 1441-1447, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37849548

RESUMEN

Methyl lysine readers, specifically PHD fingers, are emerging epigenetic targets in human diseases. For example, several PHD finger fusions are implicated in clinical cases of acute myeloid leukemia, highlighting the potential for PHD inhibitors in disease regulation. However, limited chemical matter targeting PHD fingers exists. Here we report the first fragment-based screen against the BPTF PHD to identify several of the first reported BPTF PHD-targeting small-molecule ligands. We used ligand-observed NMR to first screen a fragment library, followed by biophysical validation to prioritize two scaffolds, pyrrolidine- and pyridazine-containing fragments. Structural predictions show that these respective scaffolds may engage two distinct subpockets on the protein. The demonstrated ligandability of the BPTF PHD supports the future development of methyl lysine reader chemical probes to study their oncogenic functions.

13.
Structure ; 31(12): 1545-1555.e9, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-37729916

RESUMEN

The human nuclear receptor (NR) family of transcription factors contains 48 proteins that bind lipophilic molecules. Approved NR therapies have had immense success treating various diseases, but lack of selectivity has hindered efforts to therapeutically target the majority of NRs due to unpredictable off-target effects. The synthetic ligand T0901317 was originally discovered as a potent agonist of liver X receptors (LXRα/ß) but subsequently found to target additional NRs, with activation of pregnane X receptor (PXR) being as potent as that of LXRs. We previously showed that directed rigidity reduces PXR binding by T0901317 derivatives through unfavorable protein remodeling. Here, we use a similar approach to achieve selectivity for PXR over other T0901317-targeted NRs. One molecule, SJPYT-318, accomplishes selectivity by favorably utilizing PXR's flexible binding pocket and surprisingly binding in a new mode distinct from the parental T0901317. Our work provides a structure-guided framework to achieve NR selectivity from promiscuous compounds.


Asunto(s)
Receptores de Esteroides , Humanos , Receptor X de Pregnano , Receptores de Esteroides/química , Ligandos , Receptores Citoplasmáticos y Nucleares
14.
Nat Commun ; 14(1): 4003, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414763

RESUMEN

A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Animales , Ratones , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Línea Celular , Oncogenes , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética
15.
Sci Adv ; 9(21): eadg8156, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224250

RESUMEN

Degradation of defective mitochondria is an essential process to maintain cellular homeostasis and it is strictly regulated by the ubiquitin-proteasome system (UPS) and lysosomal activities. Here, using genome-wide CRISPR and small interference RNA screens, we identified a critical contribution of the lysosomal system in controlling aberrant induction of apoptosis following mitochondrial damage. After treatment with mitochondrial toxins, activation of the PINK1-Parkin axis triggered a BAX- and BAK-independent process of cytochrome c release from mitochondria followed by APAF1 and caspase 9-dependent apoptosis. This phenomenon was mediated by UPS-dependent outer mitochondrial membrane (OMM) degradation and was reversed using proteasome inhibitors. We found that the subsequent recruitment of the autophagy machinery to the OMM protected cells from apoptosis, mediating the lysosomal degradation of dysfunctional mitochondria. Our results underscore a major role of the autophagy machinery in counteracting aberrant noncanonical apoptosis and identified autophagy receptors as key elements in the regulation of this process.


Asunto(s)
Apoptosis , Mitofagia , Proteína X Asociada a bcl-2/genética , Autofagia , Mitocondrias , Ubiquitina
17.
Proc Natl Acad Sci U S A ; 120(10): e2217804120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848571

RESUMEN

Ligand-binding promiscuity in detoxification systems protects the body from toxicological harm but is a roadblock to drug development due to the difficulty in optimizing small molecules to both retain target potency and avoid metabolic events. Immense effort is invested in evaluating metabolism of molecules to develop safer, more effective treatments, but engineering specificity into or out of promiscuous proteins and their ligands is a challenging task. To better understand the promiscuous nature of detoxification networks, we have used X-ray crystallography to characterize a structural feature of pregnane X receptor (PXR), a nuclear receptor that is activated by diverse molecules (with different structures and sizes) to up-regulate transcription of drug metabolism genes. We found that large ligands expand PXR's ligand-binding pocket, and the ligand-induced expansion occurs through a specific unfavorable compound-protein clash that likely contributes to reduced binding affinity. Removing the clash by compound modification resulted in more favorable binding modes with significantly enhanced binding affinity. We then engineered the unfavorable ligand-protein clash into a potent, small PXR ligand, resulting in marked reduction in PXR binding and activation. Structural analysis showed that PXR is remodeled, and the modified ligands reposition in the binding pocket to avoid clashes, but the conformational changes result in less favorable binding modes. Thus, ligand-induced binding pocket expansion increases ligand-binding potential of PXR but is an unfavorable event; therefore, drug candidates can be engineered to expand PXR's ligand-binding pocket and reduce their safety liability due to PXR binding.


Asunto(s)
Desarrollo de Medicamentos , Ingeniería , Ligandos , Cristalografía por Rayos X , Psicoterapia
18.
Nat Commun ; 14(1): 809, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781850

RESUMEN

Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Complejo de la Endopetidasa Proteasomal , Lactante , Adulto , Humanos , Niño , Complejo de la Endopetidasa Proteasomal/genética , Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma
19.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805027

RESUMEN

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Portadoras , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Cancer Metab ; 11(1): 4, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805760

RESUMEN

Gene expression signatures associated with breast cancer metastases suggest that metabolic re-wiring is important for metastatic growth in lungs, bones, and other organs. However, since pathway fluxes depend on additional factors such as ATP demand, allosteric effects, and post-translational modification, flux analysis is necessary to conclusively establish phenotypes. In this study, the metabolic phenotypes of breast cancer cell lines with low (T47D) or high (MDA-MB-231) metastatic potential, as well as lung (LM)- and bone (BoM)-homing lines derived from MDA-MB-231 cells, were assessed by 13C metabolite labeling from [1,2-13C] glucose or [5-13C] glutamine and the rates of nutrient and oxygen consumption and lactate production. MDA-MB-231 and T47D cells produced 55 and 63%, respectively, of ATP from oxidative phosphorylation, whereas LM and BoM cells were more glycolytic, deriving only 20-25% of their ATP from mitochondria. ATP demand by BoM and LM cells was approximately half the rate of the parent cells. Of the anabolic fluxes assessed, nucleotide synthesis was the major ATP consumer for all cell lines. Glycolytic NADH production by LM cells exceeded the rate at which it could be oxidized by mitochondria, suggesting that the malate-aspartate shuttle was not involved in re-oxidation of these reducing equivalents. Serine synthesis was undetectable in MDA-MB-231 cells, whereas 3-5% of glucose was shunted to serine by LM and BoM lines. Proliferation rates of T47D, BoM, and LM lines tightly correlated with their respiration-normalized NADPH production rates. In contrast, MDA-MB-231 cells produced NADPH and GSH at higher rates, suggesting this line is more oxidatively stressed. Approximately half to two-thirds of NADPH produced by T47D, MDA-MB-231, and BoM cells was from the oxidative PPP, whereas the majority in LM cells was from the folate cycle. All four cell lines used the non-oxidative PPP to produce pentose phosphates, although this was most prominent for LM cells. Taken together, the metabolic phenotypes of LM and BoM lines differed from the parent line and from each other, supporting the metabolic re-wiring hypothesis as a feature of metastasis to lung and bone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA