Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612014

RESUMEN

Dielectric elastomers have attracted considerable attention both from academia and industry alike over the last two decades due to their superior mechanical properties. In parallel, research on the mechanical properties of dielectrics has been steadily advancing, including the theoretical, experimental, and numerical aspects. It has been recognized that the electromechanical coupling property of dielectric materials can be utilized to drive deformations in functional devices in a more controllable and intelligent manner. This paper reviews recent advances in the theory of dielectrics, with specific attention focused on the theory proposed by Dorfmann and Ogden. Additionally, we provide examples illustrating the application of this theory to analyze the electromechanical deformations and the associated bifurcations in soft dielectrics. We compared the bifurcations in elastic and dielectric materials and found that only compressive bifurcation modes exist in elastic structures, whereas both compressive and tensile modes coexist in dielectric structures. We summarize two proposed ways to suppress and prevent the tensile bifurcations in dielectric materials. We hope that this literature survey will foster further advancements in the field of the electroelastic theory of soft dielectrics.

2.
Ultrasonics ; 132: 106964, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36871440

RESUMEN

Terahertz elastic waves travelling in piezoelectric semiconductors (PSs) with the deformation-polarization-carrier coupling have a huge potential application in elastic wave-based devices. To reveal wave propagation characteristics of terahertz elastic waves in rod-like PS structures, we present three typical rod models based on the Hamilton principle and the linearization of the nonlinear current, which are extensions of the classical, Love, and Mindlin-Herrmann rod models for elastic media to those for PS materials. Using the derived equations, the analytical dispersion relations of the elastic longitudinal waves propagating in an n-type PS rod are obtained, which can be reduced to those for piezoelectric and elastic rods by sequentially dropping the corresponding electron- and piezoelectricity-related terms. The Mindlin-Herrmann rod model is more accurate for analysis of terahertz elastic longitudinal wave in rod-like PS structures. The effects of the interaction between the piezoelectricity and semiconducting properties on the dispersion behaviors of terahertz elastic longitudinal waves are investigated in detail. Numerical results show that both phase and group velocities have a 50%-60% reduction in the terahertz range in comparison with those in the low frequency range, and the effective tuning range of the initial electron concentration is different for longitudinal waves with different frequencies. It lays the theoretical foundations for the design of terahertz elastic wave-based devices.

3.
Nano Lett ; 22(6): 2309-2319, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35238577

RESUMEN

Cartilage adheres to subchondral bone via a specific osteochondral interface tissue where forces are transferred from soft cartilage to hard bone without conferring fatigue damage over a lifetime of load cycles. However, the fine structure and mechanical properties of the osteochondral interface tissue remain unclear. Here, we identified an ultrathin ∼20-30 µm graded calcified region with two-layered micronano structures of osteochondral interface tissue in the human knee joint, which exhibited characteristic biomolecular compositions and complex nanocrystals assembly. Results from finite element simulations revealed that within this region, an exponential increase of modulus (3 orders of magnitude) was conducive to force transmission. Nanoscale heterogeneity in the hydroxyapatite, coupled with enrichment of elastic-responsive protein-titin, which is usually present in muscle, endowed the osteochondral tissue with excellent mechanical properties. Collectively, these results provide novel insights into the potential design for high-performance interface materials for osteochondral interface regeneration.


Asunto(s)
Cartílago Articular , Nanoestructuras , Huesos , Humanos , Articulación de la Rodilla , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-35294348

RESUMEN

Mode coupling between the operation mode and unwanted eigenmodes has a significant influence on the working performance of novel thin-film magnetoelectric (ME) devices operating at high frequencies. In this article, the extended frequency spectrum quantitative prediction (FSQP) method is used to investigate mode-coupling vibrations in high-frequency ME heterostructures. This method has three key procedures. First, wave propagation in ME heterostructures is studied to determine the wavenumber and frequency of the eigenmodes. Second, the variational formulation of a general ME heterostructure is constructed. Finally, frequency spectra for predicting the coupling strength among the eigenmodes are obtained by substituting the solutions consisting of all eigenmodes into the variational formulation. Two numerical examples are presented to validate the extended FSQP method. The mode shapes of the mechanical displacements are used to thoroughly describe the mode-coupling behavior in different vibration modes. The numerical results show that the mode-coupling strength is significantly affected by the structural size and number of layers in an ME heterostructure. Furthermore, structural symmetry along the thickness direction may cause specific mode-decoupling phenomena. Effective strategies for suppressing multimode-coupling vibrations in ME heterostructures by optimizing the lateral aspect ratios based on the frequency spectra are proposed to guide device design.

5.
Build Simul ; 15(7): 1259-1276, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34659649

RESUMEN

This study conducted the numerical models validated by wind-tunnel experiments to investigate the issues of Re-independence of indoor airflow and pollutant dispersion within an isolated building. The window Reynolds number (Re w ) was specified to characterize the indoor flow and dispersion. The indicators of RRC (ratio of relative change) or DR (K_DR) (difference ratio of dimensionless concentration) ≤ 5% were applied to quantitatively determine the critical Re w for indoor flow and turbulent diffusion. The results show that the critical Re (Re crit) value is position-dependent, and Re crit at the most unfavorable position should be suggested as the optimal value within the whole areas of interest. Thus Re H,crit = 27,000 is recommended for the outdoor flows; while Re w,crit = 15,000 is determined for the indoor flows due to the lower part below the window showing the most unfavorable. The suggested Re w,crit (=15,000) for indoor airflow and cross ventilation is independence of the window size. Moreover, taking K_DR ≤ 5% as the indicator, the suggested Re w,crit for ensuring indoor pollutant diffusion enter the Re-independence regime should also be 15,000, indicating that indoor passive diffusion is completely determined by the flow structures. The contours of dimensionless velocity (U/U 0) and concentration (K) against the increasing Re w further confirmed this critical value. This study further reveals the Re-independence issues for indoor flow and dispersion to ensure the reliability of the data obtained by reduced-scale numerical or wind-tunnel models.

6.
Antimicrob Agents Chemother ; 65(11): e0106321, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34491805

RESUMEN

SCTA01 is a novel monoclonal antibody with promising prophylactic and therapeutic potential for COVID-19. This study aimed to evaluate the safety, tolerability, pharmacokinetics (PK) and immunogenicity of SCTA01 in healthy adults. This was a randomized, double-blind, placebo-controlled, dose escalation phase I clinical trial. Healthy adults were randomly assigned to cohort 1 (n = 5; 3:2), cohort 2 (n = 8; 6:2), cohort 3, or cohort 4 (both n = 10; 8:2) to receive SCTA01 (5, 15, 30, and 50 mg/kg, respectively) versus placebo. All participants were followed up for clinical, laboratory, PK, and immunogenicity assessments for 84 days. The primary outcomes were the dose-limiting toxicity (DLT) and maximal tolerable dose (MTD), and the secondary outcomes included PK parameters, immunogenicity, and adverse events (AE). Of the 33 participants, 18 experienced treatment-related AEs; the frequency was 52.0% (13/25) in participants receiving SCTA01 and 62.5% (5/8) in those receiving placebo. All AEs were mild. There was no serious AE or death. No DLT was reported, and the MTD of SCTA01 was not reached. SCTA01 with a dose range of 5 to 50 mg/kg had nearly linear dose-proportional increases in Cmax and AUC parameters. An antidrug antibody response was detected in four (16.0%) participants receiving SCTA01, with low titers, between the baseline and day 28, but all became negative later. In conclusion, SCTA01 up to 50 mg/kg was safe and well-tolerated in healthy participants. Its PK parameters were nearly linear dose-proportional. (This study has been registered at ClinicalTrials.gov under identifier NCT04483375.).


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Antivirales , Método Doble Ciego , Humanos
7.
Proc Math Phys Eng Sci ; 476(2239): 20200267, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32831614

RESUMEN

We investigate the theoretical nonlinear response, Hessian stability, and possible wrinkling behaviour of a voltage-activated dielectric plate immersed in a tank filled with silicone oil. Fixed rigid electrodes are placed on the top and bottom of the tank, and an electric field is generated by a potential difference between the electrodes. We solve the associated incremental boundary value problem of superimposed, inhomogeneous small-amplitude wrinkles, signalling the onset of instability. We decouple the resulting bifurcation equation into symmetric and antisymmetric modes. For a neo-Hookean dielectric plate, we show that a potential difference between the electrodes can induce a thinning of the plate and thus an increase of its planar area, similar to the scenarios encountered when there is no silicone oil. However, we also find that, depending on the material and geometric parameters, an increasing applied voltage can also lead to a thickening of the plate, and thus a shrinking of its area. In that scenario, Hessian instability and wrinkling bifurcation may then occur spontaneously once some critical voltages are reached.

8.
Sci Adv ; 6(25): eabb2393, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596472

RESUMEN

Transfer printing that enables heterogeneous integration of materials in desired layouts offers unprecedented opportunities for developing high-performance unconventional electronic systems. However, large-area integration of ultrathin and delicate functional micro-objects with high yields in a programmable fashion still remains as a great challenge. Here, we present a simple, cost-effective, yet robust transfer printing technique via a shape-conformal stamp with actively actuated surface microstructures for programmable and scalable transfer printing with high reliability and efficiency. The shape-conformal stamp features the polymeric backing and commercially available adhesive layer with embedded expandable microspheres. Upon external thermal stimuli, the embedded microspheres expand to form surface microstructures and yield weak adhesion for reliable release. Systematic experimental and computational studies reveal the fundamental aspects of the extraordinary adhesion switchability of stamp. Demonstrations of this protocol in deterministic assemblies of diverse challenging inorganic micro-objects illustrate its extraordinary capabilities in transfer printing for developing high-performance flexible inorganic electronics.

9.
Soft Matter ; 15(42): 8468-8474, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31589217

RESUMEN

Initial residual stress is omnipresent in biological tissues and soft matter, and can affect growth-induced pattern selection significantly. Here we demonstrate this effect experimentally by letting soft tubes grow in the presence or absence of initial residual stress and by observing different growth pattern evolutions. These experiments motivate us to model the mechanisms at play when a growing bilayer tubular organ spontaneously displays buckling patterns on its inner surface. We demonstrate that not only differential growth, geometry and elasticity, but also initial residual stress distribution, exert a notable influence on these pattern phenomena. Prescribing an initial residual stress distribution offers an alternative or a more effective way to implement pattern selection for growable bio-tissues or soft matter. The results also show promise for the design of 4D bio-mimic printing protocols or for controlling hydrogel actuators.


Asunto(s)
Estrés Mecánico , Andamios del Tejido/química , Resinas Acrílicas/química , Simulación por Computador , Elasticidad , Hidrogeles/química , Impresión Tridimensional , Goma/química , Ingeniería de Tejidos/métodos
10.
Adv Mater ; 31(36): e1902870, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31322309

RESUMEN

Triple-cation mixed-halide perovskites of composition Csx (FAy MA1- y )1 -x Pb(Iz Br1 -z )3 (CsFAMA) have been reported to possess excellent photovoltaic efficiency with minimal hysteresis; in this work, nanoscale insight is shed into the roles of illumination-induced polarization and ionic migration in photovoltaic hysteresis. By examining the concurrent evolution of ionic distribution and spontaneous polarization of CsFAMA under light illumination using dynamic-strain-based scanning probe microscopy, strong linear piezoelectricity arising from photoenhanced polarization is observed, while ionic migration is found to be not significantly increased by lightening. Nanoscale photocurrents are mapped under a series of biases using conductive atomic force microscopy, revealing negligible difference between forward and backward scans, and local IV curves reconstructed from principal component analysis show minimal hysteresis of just 1%. These observations at the nanoscale are confirmed in a macroscopic perovskite solar cell made of CsFAMA, exhibiting a high efficiency of 20.11% and with hysteresis index as small as 3%. Ionic migration, polarization, and photocurrent hysteresis are thus directly correlated at the nanoscale, and photoenhanced polarization in triple-cation mixed-halide perovskites is established, which does not contribute to the photovoltaic hysteresis.

11.
Sci Rep ; 9(1): 8232, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160629

RESUMEN

Residual stress is ubiquitous and indispensable in most biological and artificial materials, where it sustains and optimizes many biological and functional mechanisms. The theory of volume growth, starting from a stress-free initial state, is widely used to explain the creation and evolution of growth-induced residual stress and the resulting changes in shape, and to model how growing bio-tissues such as arteries and solid tumors develop a strategy of pattern creation according to geometrical and material parameters. This modelling provides promising avenues for designing and directing some appropriate morphology of a given tissue or organ and achieve some targeted biomedical function. In this paper, we rely on a modified, augmented theory to reveal how we can obtain growth-induced residual stress and pattern evolution of a layered artery by starting from an existing, non-zero initial residual stress state. We use experimentally determined residual stress distributions of aged bi-layered human aortas and quantify their influence by a magnitude factor. Our results show that initial residual stress has a more significant impact on residual stress accumulation and the subsequent evolution of patterns than geometry and material parameters. Additionally, we provide an essential explanation for growth-induced patterns driven by differential growth coupled to an initial residual stress. Finally, we show that initial residual stress is a readily available way to control growth-induced pattern creation for tissues and thus may provide a promising inspiration for biomedical engineering.


Asunto(s)
Aorta/crecimiento & desarrollo , Estrés Mecánico , Humanos , Modelos Cardiovasculares
12.
Soft Matter ; 15(14): 2921-2927, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30694287

RESUMEN

Exerting mechanical loads on soft periodic porous phononic crystals provides a unique opportunity to control the propagation of waves through the peculiar band gaps. However, it is quite difficult to experimentally confirm the band gaps in soft materials owing to their viscosity and instability-prone character. We investigate here via experiments the effect of regulation of uniaxial tension on the band gaps in a 2D soft phononic crystal with criss-crossed elliptical holes which was designed based on the contrarian thinking to our previous study. The results show that the soft phononic crystal has rich initial band gaps and can be tuned by harnessing uniaxial tension to achieve continuous control of elastic band gaps. Moreover, the effect of the uniaxial tension on the effective Poisson's ratio of the structure is also studied. The present study confirms the feasibility of the design of soft tunable phononic crystals and acoustic devices by harnessing uniaxial tension.

13.
Adv Mater ; 30(13): e1706695, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29399894

RESUMEN

Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.

14.
Proc Math Phys Eng Sci ; 473(2208): 20170410, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29290731

RESUMEN

The buckling of a stiff film on a compliant substrate has attracted much attention due to its wide applications such as thin-film metrology, surface patterning and stretchable electronics. An analytical model is established for the buckling of a stiff thin film on a semi-infinite elastic graded compliant substrate subjected to in-plane compression. The critical compressive strain and buckling wavelength for the sinusoidal mode are obtained analytically for the case with the substrate modulus decaying exponentially. The rigorous finite element analysis (FEA) is performed to validate the analytical model and investigate the postbuckling behaviour of the system. The critical buckling strain for the period-doubling mode is obtained numerically. The influences of various material parameters on the results are investigated. These results are helpful to provide physical insights on the buckling of elastic graded substrate-supported thin film.

15.
Ultrasonics ; 54(7): 1899-903, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24924785

RESUMEN

We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with periodically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is employed. The problem is found to be mathematically equivalent to the motion of an electron in a periodic potential field governed by Schrodinger's equation. An analytical solution is obtained. Numerical results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be considered as phononic crystals. The effects of various parameters on the frequency spectrum are examined.

16.
PLoS One ; 8(6): e65864, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762444

RESUMEN

We report a theoretical study on the cyclic stretch-induced reorientation of spindle-shaped cells. Specifically, by taking into account the evolution of sub-cellular structures like the contractile stress fibers and adhesive receptor-ligand clusters, we develop a mechanochemical model to describe the dynamics of cell realignment in response to cyclically stretched substrates. Our main hypothesis is that cells tend to orient in the direction where the formation of stress fibers is energetically most favorable. We show that, when subjected to cyclic stretch, the final alignment of cells reflects the competition between the elevated force within stress fibers that accelerates their disassembly and the disruption of cell-substrate adhesion as well, and an effectively increased substrate rigidity that promotes more stable focal adhesions. Our model predictions are consistent with various observations like the substrate rigidity dependent formation of stable adhesions and the stretching frequency, as well as stretching amplitude, dependence of cell realignment. This theory also provides a simple explanation on the regulation of protein Rho in the formation of stretch-induced stress fibers in cells.


Asunto(s)
Citoesqueleto/fisiología , Células Eucariotas/citología , Adhesiones Focales/fisiología , Modelos Biológicos , Fibras de Estrés/fisiología , Proteínas de Unión al GTP rho/fisiología , Animales , Fenómenos Biomecánicos , Adhesión Celular , Forma de la Célula , Células Cultivadas , Citoesqueleto/química , Células Eucariotas/metabolismo , Células Eucariotas/fisiología , Adhesiones Focales/química , Humanos , Fibras de Estrés/química , Estrés Mecánico , Termodinámica
17.
Artículo en Inglés | MEDLINE | ID: mdl-23549548

RESUMEN

We study straight-crested waves and vibration modes with spatial variations along the x3 direction only in an AT-cut quartz plate resonator. The equations of anisotropic elasticity are used. Dispersion relations for face-shear and thickness-twist waves in unbounded plates are plotted. Frequency spectra are obtained for face-shear and thickness-twist vibrations of finite plates in which these modes are coupled by boundary conditions. Most importantly, our analysis produces the frequency spectra for overtone modes which do not seem to have been obtained before for x3-dependent modes. Numerical results for third- and fifth-overtone AT-cut quartz resonators are presented, showing that higher-order overtone modes are associated with more mode couplings.

18.
Artículo en Inglés | MEDLINE | ID: mdl-24658726

RESUMEN

We study the effects of interface bonding on acoustic wave generation in an elastic body using surface-mounted piezoelectric transducers driven electrically. A theoretical analysis is performed based on a physical model of a piezoelectric layer on an elastic substrate. The transducer-substrate interface is described by the shear-slip model, representing a viscoelastic interface. Different from the results in the literature on free vibrations of structures with weak interfaces, this paper presents an electrically forced vibration analysis. An analytical solution for the generated acoustic wave is obtained and used to calculate its energy flux and the efficiency of the transduction. The effects of the interface parameters are examined. It is found that the interface bonding affects the performance of the transducer in multiple ways, some of which may be exploitable in designs for better transducer performance. In particular, optimal transduction is not necessarily associated with a perfectly bonded interface.


Asunto(s)
Sistemas Microelectromecánicos/instrumentación , Modelos Teóricos , Transductores , Simulación por Computador , Diseño Asistido por Computadora , Módulo de Elasticidad , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Dispersión de Radiación , Sonido , Propiedades de Superficie
19.
Ultrasonics ; 52(1): 125-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21821270

RESUMEN

The dispersion behavior of waves in multiferroic plates with imperfect interfacial bonding has been investigated via the method of reverberation-ray matrix, which is directly established from the three-dimensional equations of magneto-electro-elasticity in the form of state space formalism. A generalized spring-layer model is employed to characterize the interfacial imperfection. By introducing a dual system of local coordinates for each single layer, the numerical instability usually encountered in the state space method can be avoided. Based on the proposed method, a typical sandwich plate made of piezoelectric and piezomagnetic phases is considered in numerical examples to calculate the dispersion curves and mode shapes. It is demonstrated that the results obtained by the present method is unconditionally stable as compared to the traditional state space method. The influence of different interfacial bonding conditions on the dispersion characteristics and corresponding mode shapes is investigated.

20.
Hum Mutat ; 32(9): 1000-3, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21618645

RESUMEN

The association between the CHEK2 and breast cancer risk in Chinese women is unknown. Here, we screened the full CHEK2 coding sequence in 118 Chinese familial breast cancer cases who are negative for mutations in BRCA1 and BRCA2, one recurrent mutation, CHEK2 c.1111C>T (p.H371Y), was identified in five index cases in this cohort. Functional analysis suggested that CHEK2 p.H371Y was a pathogenic mutation that resulted in decreased kinase activity. We further screened the CHEK2 p.H371Y mutation in 909 unselected breast cancer cases and 1,228 healthy individuals. The frequencies of the CHEK2 p.H371Y in familial and unselected breast cancer cases and controls were 4.24% (5/118), 1.76% (16/909), and 0.73% (9/1228), respectively. The p.H371Y mutation was significantly associated with increased breast cancer risk in unselected breast cancer (odds ratio [OR] 2.43, 95% confidence interval [CI] 1.07-5.52, P = 0.034). Our results indicate that the recurrent mutation, p.H371Y, confers a moderate risk of breast cancer in Chinese women.


Asunto(s)
Pueblo Asiatico/genética , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Quinasa de Punto de Control 2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación/genética , Estudios de Casos y Controles , China , Femenino , Humanos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...