Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766761

RESUMEN

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Asunto(s)
Bagres , Filogenia , Filogeografía , Animales , Bagres/genética , Bagres/clasificación , Genoma Mitocondrial , Variación Genética , Distribución Animal
2.
Brain Res Bull ; 213: 110990, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821245

RESUMEN

Growing evidence has demonstrated that gut microbiota could be developed as a therapeutic target due to its contribution to microglia activation in the pathological process of ischemic stroke. Acorus tatarinowii oils (AT oils), which is considered as the active fraction of a traditional Chinese herbal medicine Acorus tatarinowii, exerts various bioactivities and prebiotic effects. However, it remains unclear that the effect of AT oils on inflammatory response after ischemic stroke and whether its underlying mechanism is associated to gut microbiota and the intestinal barrier. In the current study, we aim to investigate the anti-microglial neuroinflammation mechanism of AT oils in a middle cerebral artery occlusion model of ischemic stroke. The compositions of AT oils were identified by GC-MS. Our results demonstrated that AT oils could effectively relieve cerebral infarction, inhibit neuronal apoptosis, degrade the release of pro-inflammatory factors (TNF-α, IL-17, IL-6 and IFN-γ), and mediate the polarization of microglia. Moreover, AT oils restored the composition and the balance of gut microbiota in stroke rats, and reduced abundance of opportunistic genera including Verrucomicrobia, Akkermansia and Tenericutes, as well as increased beneficial bacteria abundance such as Tenericutes and Prevotella_copri. To investigate the role of gut microbiota on AT oils against ischemic stroke, we conducted the fecal microbiota transplantation (FMT) experiments with gut microbiota consumption, which suggested that the depletion of gut microbiota took away the protective effect of AT oils, confirming the importance of gut microbiota in the protective effect of AT oils on ischemic stroke. FMT experiments have demonstrated that AT oils preserved the gut permeability and blood-brain barrier, as well as mediated the microglial phenotype under the intervention of gut microbiota. In summary, AT oils could efficaciously moderate neuronal damage and intervene microglial phenotype by reversing gut microbiota disorder in ischemic stroke rats.


Asunto(s)
Acorus , Microbioma Gastrointestinal , Microglía , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratas , Masculino , Acorus/química , Fármacos Neuroprotectores/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Infarto de la Arteria Cerebral Media , Aceites de Plantas/farmacología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico
3.
Ecol Evol ; 14(4): e11226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628924

RESUMEN

Fish dietary niche is a core focus, and it reflects the diversity of resources, habitats, or environments occupied by a species. However, whether geographic segregation among different populations triggers dietary diversification and concomitant fish niche shift remains unknown. In the present study, we selected the Black Amur bream (Megalobrama terminalis) is a migratory fish species that plays an important role in the material transfer and energy cycling of river ecosystems, inhabiting southern China drainage with multiple geographic populations. Here, we utilized the combined analyses of 18S rDNA high-throughput sequencing in fish gut contents and fatty acid (FA) in muscle tissues to evaluate potential spatial patterns of habitat and resource use for M. terminalis in three rivers of southern China. Our results showed that prey items of the Xijiang (XR) population (Pearl River) exhibited the highest species diversity and richness among the three geographic populations. Moreover, diet composition of M. terminalis was affected by spatial differences associated with geographic segregation. Analyses of FA biomarkers indicated that the highest levels of C16:0, C18:3n-3, and C18:2n-6c were found in Wanquan (WS) population (Wanquan River). The XR population exhibited a distinct FA profile characterized by higher amounts of arachidonic acid (ARA) and docosahexaenoic acid (DHA). The Moyang (MY) population (Moyang River) acted as the linkage between WS and XR populations and consisted of middle levels of saturated FAs (SFAs) and polyunsaturated FAs (PUFAs). The XR population displayed a greater FA niche width compared with WS population. Furthermore, we observed a close positive relationship between the niche width and α-diversity indices of dietary resources for FA proflies. Our study provides valued information to develop different conservation strategies among different populations and improve fisheries management for M. terminalis and other endemic species in local rivers.

4.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464259

RESUMEN

Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.

5.
Nat Commun ; 15(1): 2477, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509115

RESUMEN

How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Morfogénesis/fisiología , Citoesqueleto/metabolismo , Transducción de Señal/fisiología , Alas de Animales , Drosophila melanogaster/metabolismo
6.
Ann Surg Oncol ; 31(5): 3086, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319517

RESUMEN

BACKGROUND: Hepatectomy combined with hepatic artery reconstruction in the operation for hilar cholangiocarcinoma (Klatskin tumor) is a challenging procedure. We present a video of left hepatectomy combined with right hepatic artery reconstruction for hilar cholangiocarcinoma. PATIENT AND METHODS: The patient was a 60-year-old male who presented with obstructive jaundice. The imaging examination showed that the confluence of left and right hepatic ducts and the wall of common hepatic duct were thickened, the local lumen was narrowed, the intrahepatic bile duct was dilated, and the right hepatic artery was invaded by tumors nearly 2.3 centimeters. Left hepatectomy with total caudate lobectomy, resection with reconstruction of right hepatic artery, hilar lymphadenectomy, and Roux-en-Y hepaticojejunostomy were performed. RESULTS: The operation time was 345 min, and the amount of bleeding was about 400 ml. There was no blood transfusion. The pathology showed poorly differentiated adenocarcinoma, with negative margins of common bile duct and right hepatic duct, and negative results of all lymph nodes. The patient's recovery was uneventful and he was discharged on postoperative day 14. The patient was disease free at 12-month follow-up evaluation. CONCLUSIONS: Hepatic artery resection and reconstruction procedure is safe and feasible for hilar cholangiocarcinoma in a highly tertiary hepatobiliary center.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Tumor de Klatskin , Masculino , Humanos , Persona de Mediana Edad , Tumor de Klatskin/cirugía , Tumor de Klatskin/patología , Hepatectomía/métodos , Arteria Hepática/cirugía , Arteria Hepática/patología , Hígado/cirugía , Neoplasias de los Conductos Biliares/cirugía , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/cirugía
7.
Seizure ; 114: 61-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056030

RESUMEN

OBJECTIVE: To assess the efficacy and safety of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC), using diffusion spectrum imaging (DSI) tractography to preoperatively delineate the optic radiation (OR) and reduce the risk of visual field defects (VFDs) where the epileptogenic zones (EZs) are located in or close to the eloquent visual areas. METHODS: We prospectively followed up twenty-four consecutive patients (12 males and 12 females) who underwent SEEG-guided RFTC in or near the OR pathway. A distance of ≥ 3.5 mm away from the OR on the targeted electrodes contacts that exhibited relevant ictal onset patterns, IEDs and EES during SEEG recordings, was required as our selection criterion prior to performing RFTC, enough to theoretically prevent VFDs. Using default tracking parameters, the optic radiation was tracked semi-automatically in DSI-studio. RESULTS: There were 12 male and 12 female patients ranging in age from 6 to 57 years, with follow-up period ranging from 6 to 37 months. Nineteen patients responded to RFTC (R+, 79.16 %), and 5 patients did not benefit from RFTC (R-, 20.83 %). The preoperative application of DSI semi-automatic based OR tractography was successful in the protection of the OR in all 24 patients. Three patients experienced a neurologic deficit following RFTC, and five patients had a partial quadrant visual field deficit prior to surgery that did not worsen, and none of the remaining nineteen patients had a quadrant visual field deficit. CONCLUSION: Our study validates the safety and efficacy of SEEG-RFTC as a viable therapeutic approach for epileptic foci situated in or adjacent to the visual eloquent regions. We demonstrate that DSI-based tractography offers superior precision in delineating the OR compared to DTI. We establish that implementing a criterion of a minimum distance of ≥ 3.5 mm in radius from the OR on the targeted electrode contacts prior to conducting RFTC can effectively mitigate the risk of VFDs.


Asunto(s)
Epilepsia , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Resultado del Tratamiento , Electroencefalografía/métodos , Epilepsia/cirugía , Técnicas Estereotáxicas , Electrocoagulación/métodos
8.
Gene ; 895: 148000, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979951

RESUMEN

Dam construction in riverine ecosystems has fragmented natural aquatic habitats and has altered environmental conditions. As a result, damming has been demonstrated to threaten aquatic biodiversity by reducing species distribution ranges and hindering gene exchange, leading to the inability to adapt to environmental changes. Knowledge of the contemporary genetic diversity and genetic structure of fish populations that are separated by dams is vital to developing effective conservation strategies, particularly for endangered fish species. We chose the Lianjiang River, a tributary of the Pearl River, as a case study to assess the effects of dams on the genetic diversity and genetic structure of an endangered fish species, Hemibagrus guttatus, using whole-genome resequencing data from 63 fish samples. The results indicated low levels of genetic diversity, high levels of inbreeding and decreasing trend of effective population size in fragmented H. guttatus populations. In addition, there were significant genetic structure and genetic differentiation among populations, suggesting that the dams might have affected H. guttatus populations. Our findings may benefit management and conservation practices for this endangered species that is currently suffering from the effects of dam construction.


Asunto(s)
Bagres , Animales , Bagres/genética , Ecosistema , Ríos , Biodiversidad , Análisis de Secuencia de ADN , Especies en Peligro de Extinción
9.
Phys Rev E ; 108(5-1): 054127, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115526

RESUMEN

Long-range hoppings in quantum disordered systems are known to yield quantum multifractality, the features of which can go beyond the characteristic properties associated with an Anderson transition. Indeed, critical dynamics of long-range quantum systems can exhibit anomalous dynamical behaviors distinct from those at the Anderson transition in finite dimensions. In this paper, we propose a phenomenological model of wave packet expansion in long-range hopping systems. We consider both their multifractal properties and the algebraic fat tails induced by the long-range hoppings. Using this model, we analytically derive the dynamics of moments and inverse participation ratios of the time-evolving wave packets, in connection with the multifractal dimension of the system. To validate our predictions, we perform numerical simulations of a Floquet model that is analogous to the power law random banded matrix ensemble. Unlike the Anderson transition in finite dimensions, the dynamics of such systems cannot be adequately described by a single parameter scaling law that solely depends on time. Instead, it becomes crucial to establish scaling laws involving both the finite size and the time. Explicit scaling laws for the observables under consideration are presented. Our findings are of considerable interest towards applications in the fields of many-body localization and Anderson localization on random graphs, where long-range effects arise due to the inherent topology of the Hilbert space.

10.
Front Pharmacol ; 14: 1252146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964876

RESUMEN

Hyperlipidemia is a disorder of lipid metabolism resulting from abnormal blood lipid metabolism and is one of the most frequent metabolic diseases that endanger people's health. Yinlan Tiaozhi capsule (YL) is a formulated TCM widely used to treat hyperlipidemia. The purpose of this study was to discover biomarkers utilizing untargeted metabolomics techniques, as well as to analyze the mechanisms underlying the changes in metabolic pathways linked to lipid-lowering, anti-inflammation, and regulation of angiogenesis in hyperlipidemia mice. To assess the efficacy of YL, serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels were measured. Biochemical examinations showed that YL significantly reduced the levels of TC, TG, LDL-c, Il6, Tnf-α, and Vegfa in hyperlipidemia mice (p < 0.01). YL also significantly increased the levels of HDL-c and Alb (p < 0.01). Twenty-seven potential serum biomarkers associated with hyperlipidemia were determined. These differential metabolites were related to the reduction of serum lipid levels in hyperlipidemia mice, probably through metabolic pathways such as linoleic acid metabolism, glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and D-glutamine and D-glutamate metabolism. Further correlation analysis showed that the serum lipid reduction through YL was related to the metabolites (amino acid metabolites, phospholipids metabolites, and fatty acids metabolites). The present study reveals that YL has a profound effect on alleviating triton WR-1339-induced hyperlipidemia, inflammation, and angiogenesis and that the positive effects of YL were primarily associated with the correction of metabolic abnormalities and the maintenance of metabolite dynamic balance.

12.
J R Soc Interface ; 20(203): 20230173, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282588

RESUMEN

In plants, the robust maintenance of tissue structure is crucial to supporting its functionality. The multi-layered shoot apical meristem (SAM) of Arabidopsis, containing stem cells, is an approximately radially symmetric tissue whose shape and structure is maintained throughout the life of the plant. In this paper, a new biologically calibrated pseudo-three-dimensional (P3D) computational model of a longitudinal section of the SAM is developed. It includes anisotropic expansion and division of cells out of the cross-section plane, as well as representation of tension experienced by the SAM epidermis. Results from the experimentally calibrated P3D model provide new insights into maintenance of the structure of the SAM epidermal cell monolayer under tension and quantify dependence of epidermal and subepidermal cell anisotropy on the amount of tension. Moreover, the model simulations revealed that out-of-plane cell growth is important in offsetting cell crowding and regulating mechanical stresses experienced by tunica cells. Predictive model simulations show that tension-determined cell division plane orientation in the apical corpus may be regulating cell and tissue shape distributions needed for maintaining structure of the wild-type SAM. This suggests that cells' responses to local mechanical cues may serve as a mechanism to regulate cell- and tissue-scale patterning.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/metabolismo
13.
NPJ Syst Biol Appl ; 9(1): 16, 2023 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210381

RESUMEN

The exact mechanism controlling cell growth remains a grand challenge in developmental biology and regenerative medicine. The Drosophila wing disc tissue serves as an ideal biological model to study mechanisms involved in growth regulation. Most existing computational models for studying tissue growth focus specifically on either chemical signals or mechanical forces. Here we developed a multiscale chemical-mechanical model to investigate the growth regulation mechanism based on the dynamics of a morphogen gradient. By comparing the spatial distribution of dividing cells and the overall tissue shape obtained in model simulations with experimental data of the wing disc, it is shown that the size of the domain of the Dpp morphogen is critical in determining tissue size and shape. A larger tissue size with a faster growth rate and more symmetric shape can be achieved if the Dpp gradient spreads in a larger domain. Together with Dpp absorbance at the peripheral zone, the feedback regulation that downregulates Dpp receptors on the cell membrane allows for further spreading of the morphogen away from its source region, resulting in prolonged tissue growth at a more spatially homogeneous growth rate.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Modelos Biológicos , Proliferación Celular , Alas de Animales/metabolismo
14.
Front Vet Sci ; 10: 1169766, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180072

RESUMEN

Classical swine fever (CSF) is a highly contagious swine disease caused by the classical swine fever virus (CSFV), wreaking havoc on global swine production. The virus is divided into three genotypes, each comprising 4-7 sub-genotypes. The major envelope glycoprotein E2 of CSFV plays an essential role in cell attachment, eliciting immune responses, and vaccine development. In this study, to study the cross-reaction and cross-neutralizing activities of antibodies against different genotypes (G) of E2 glycoproteins, ectodomains of G1.1, G2.1, G2.1d, and G3.4 CSFV E2 glycoproteins from a mammalian cell expression system were generated. The cross-reactivities of a panel of immunofluorescence assay-characterized serum derived from pigs with/without a commercial live attenuated G1.1 vaccination against different genotypes of E2 glycoproteins were detected by ELISA. Our result showed that serum against the LPCV cross-reacted with all genotypes of E2 glycoproteins. To evaluate cross-neutralizing activities, hyperimmune serum from different CSFV E2 glycoprotein-immunized mice was also generated. The result showed that mice anti-E2 hyperimmune serum exhibited better neutralizing abilities against homologous CSFV than heterogeneous viruses. In conclusion, the results provide information on the cross-reactivity of antibodies against different genogroups of CSFV E2 glycoproteins and suggest the importance of developing multi-covalent subunit vaccines for the complete protection of CSF.

15.
Front Cardiovasc Med ; 10: 1126888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082452

RESUMEN

Background: Septic shock patients fundamentally require delicate vasoactive and inotropic agent administration, which could be quantitatively and objectively evaluated by the vasoactive-inotropic score (VIS); however, whether the dynamic trends of high-time-resolution VIS alter the clinical outcomes remains unclear. Thus, this study proposes the term VIS Reduction Rate (VRR) to generalise the tendency of dynamic VIS, to explore the association of VRR and mortality for patients with septic shock. Methods: We applied dynamic and static VIS data to predict ICU mortality by two models: the long short-term memory (LSTM) deep learning model, and the extreme gradient boosting (XGBoost), respectively. The specific target cohort was extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database by the sophisticated structured query language (SQL). Enrolled patients were divided into four groups by VRR value: ≥50%, 0 ~ 50%, -50% ~ 0, and < -50%. Statistical approaches included pairwise propensity score matching (PSM), Cox proportional hazards regression, and two doubly robust estimation models to ensure the robustness of the results. The primary and secondary outcomes were ICU mortality and in-hospital mortality, respectively. Results: VRR simplifies the dosing trends of vasoactive and inotropic agents represented by dynamic VIS data while requiring fewer data. In total, 8,887 septic shock patients were included. Compared with the VRR ≥50% group, the 0 ~ 50%, -50% ~ 0, and < -50% groups had significantly higher ICU mortality [hazard ratio (HR) 1.32, 95% confidence interval (CI) 1.17-1.50, p < 0.001; HR 1.79, 95% CI 1.44-2.22, p < 0.001; HR 2.07, 95% CI 1.61-2.66, p < 0.001, respectively] and in-hospital mortality [HR 1.43, 95% CI 1.28-1.60, p < 0.001; HR 1.75, 95% CI 1.45-2.11, p < 0.001; HR 2.00, 95% CI 1.61-2.49, p < 0.001, respectively]. Similar findings were observed in two doubly robust estimation models. Conclusion: The trends of dynamic VIS in ICU might help intensivists to stratify the prognosis of adult patients with septic shock. A lower decline of VIS was remarkably associated with higher ICU and in-hospital mortality among septic shock patients receiving vasoactive-inotropic therapy for more than 24 h.

16.
Sci Rep ; 13(1): 6424, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076581

RESUMEN

Yinlan Tiaozhi capsule (YLTZC) has been widely used to treat hyperlipidemia (HLP). However, its material basis and underlying pharmacological effects remain unclean. The current study aimed to explore the mechanisms involved in the treatment of YLTZC on HLP based on network pharmacology, molecular docking, and experimental verification. Firstly, UPLC-Q-TOF-MS/MS was used to comprehensively analyze and identify the chemical constituents in YLTZC. A total of 66 compounds, mainly including flavonoids, saponins, coumarins, lactones, organic acids, and limonin were characterized and classified. Simultaneously, the mass fragmentation pattern of different types of representative compounds was further explored. By network pharmacology analysis, naringenin and ferulic acid may be the core constituents. The 52 potential targets of YLTZC, including ALB, IL-6, TNF, and VEGFA, were considered potential therapeutic targets. Molecular docking results showed that the core active constituents of YLTZC (naringenin and ferulic acid) have a strong affinity with the core targets of HLP. Lastly, animal experiments confirmed that naringenin and ferulic acid significantly upregulated the mRNA expression of ALB and downregulated the mRNA expression of IL-6, TNF, and VEGFA. In sum, the constituents of YLTZC, such as naringenin and ferulic acid, might treat HLP by regulating the mechanism of angiogenesis and inhibiting inflammatory responses. Furthermore, our data fills the gap in the material basis of YLTZC.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperlipidemias , Animales , Hiperlipidemias/tratamiento farmacológico , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Espectrometría de Masas en Tándem , ARN Mensajero , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
17.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985602

RESUMEN

Thermoelectric (TE) technology, which can convert scrap heat into electricity, has attracted considerable attention. However, broader applications of TE are hindered by lacking high-performance thermoelectric materials, which can be effectively progressed by regulating the carrier concentration. In this work, a series of PbSe(NaCl)x (x = 3, 3.5, 4, 4.5) samples were synthesized through the NaCl salt-assisted approach with Na+ and Cl- doped into their lattice. Both theoretical and experimental results demonstrate that manipulating the carrier concentration by adjusting the content of NaCl is conducive to upgrading the electrical transport properties of the materials. The carrier concentration elevated from 2.71 × 1019 cm-3 to 4.16 × 1019 cm-3, and the materials demonstrated a maximum power factor of 2.9 × 10-3 W m-1 K-2. Combined with an ultralow lattice thermal conductivity of 0.7 W m-1 K-1, a high thermoelectric figure of merit (ZT) with 1.26 at 690 K was attained in PbSe(NaCl)4.5. This study provides a guideline for chemical doping to improve the thermoelectric properties of PbSe further and promote its applications.

18.
Nano Res ; 16(2): 2821-2828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36258758

RESUMEN

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has wreaked havoc around the globe, with no end in sight. The rapid emergence of viral mutants, marked by rapid transmission and effective immune evasion, has also posed unprecedented challenges for vaccine development, not least in its speed, mass production, and distribution. Here we report a versatile "plug-and-display" strategy for creating protein vaccines, including those against malaria parasites and SARS-CoV-2, through the combined use of the intrinsically disordered protein ligase SpyStapler and computationally designed viral-like particles. The resulting protein nanoparticles harboring multiple antigens induce potent neutralizing antibody responses in mice, substantially stronger than those induced by the corresponding free antigens. This modular vaccine design enabled by SpyStapler furnishes us with a new weapon for combatting infectious diseases. Electronic Supplementary Material: Supplementary material (further details of the protein sequences, cloning procedures, TEM imaging, ELISA details, and reaction controls) is available in the online version of this article at 10.1007/s12274-022-4951-9.

19.
Environ Sci Technol ; 57(1): 751-760, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36548446

RESUMEN

Mollisols support the most productive agroecosystems in the world. Despite their critical links to food quality and human health, the varying distributions of selenium (Se) species and factors governing Se mobility in the mollisol vadose zone remain elusive. This research reveals that, in northern mollisol agroecosystems, Se hotspots (≥0.32 mg/kg) prevail along the regional river systems draining the Lesser Khingan Mountains, where piedmont Se-rich oil shales are the most probable source of regional Se. While selenate and selenite dominate Se species in the water-soluble and absorbed pools, mollisol organic matter is the major host for Se. Poorly crystalline and crystalline Fe oxides are subordinate in Se retention, hosting inorganic and organic Se at levels comparable to those in the adsorbed pool. The depth-dependent distributions of mollisol Se species for the non-cropland and cropland sites imply a predominance of reduced forms of Se under the mildly acidic and reducing conditions that, in turn, are variably impacted by agricultural land use. These findings therefore highlight that fluvial deposition and land use change together are the main drivers of the spatial variability and speciation of mollisol Se.


Asunto(s)
Compuestos de Selenio , Selenio , Humanos , Ácido Selenioso , Agricultura , Ácido Selénico , Agua
20.
Neuron ; 111(2): 236-255.e7, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36370710

RESUMEN

The coordination mechanism of neural innate immune responses for axon regeneration is not well understood. Here, we showed that neuronal deletion of protein tyrosine phosphatase non-receptor type 2 sustains the IFNγ-STAT1 activity in retinal ganglion cells (RGCs) to promote axon regeneration after injury, independent of mTOR or STAT3. DNA-damage-induced cGAMP synthase (cGAS)-stimulator of interferon genes (STINGs) activation is the functional downstream signaling. Directly activating neuronal STING by cGAMP promotes axon regeneration. In contrast to the central axons, IFNγ is locally translated in the injured peripheral axons and upregulates cGAS expression in Schwann cells and infiltrating blood cells to produce cGAMP, which promotes spontaneous axon regeneration as an immunotransmitter. Our study demonstrates that injured peripheral nervous system (PNS) axons can direct the environmental innate immune response for self-repair and that the neural antiviral mechanism can be harnessed to promote axon regeneration in the central nervous system (CNS).


Asunto(s)
Axones , Regeneración Nerviosa , Axones/fisiología , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Inmunidad Innata , Nucleotidiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA