Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 105(7): 1951-1959, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33044142

RESUMEN

Garlic leaf blight caused by Stemphylium eturmiunum was first reported in Jiangsu Province in China. The dicarboximide fungicide (DCF) procymidone is reported to possess broad-spectrum action in inhibiting filamentous fungi and is widely used to control leaf disease of various plants. Of 41 Stemphylium eturmiunum isolates collected in this study from commercial garlic farms in Pizhou and Dafeng counties of Jiangsu Province, eight isolates were resistant to procymidone. The following three phenotypes were categorized according to in vitro responses to DCFs: sensitive, low resistance to iprodione and procymidone, and high resistance to all iprodione and procymidone. The fitness of all resistant isolates was decreased in accordance with data on mycelial growth, conidiation, and virulence. After treatment with 10 µg/ml of procymidone for 4 h, mycelial intracellular glycerol concentrations of resistant isolates were significantly lower than those of sensitive isolates. Positive cross-resistance was observed between dicarboximides and phenylpyrroles, but there was no cross-resistance between dicarboximides and fluazinam or difenoconazole in the two resistant phenotypes. Nucleotide sequence alignment of two-component histidine kinase genes from sensitive and resistant isolates indicated that amino acid mutations were located at the histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein and at the phosphatase domain of the N-terminal region and the response regulator domain of the C-terminal region. To our knowledge, this is the first report of DCF resistance in Stemphylium eturmiunum, and these findings will help establish a rational strategy to manage DCF-resistant populations of Stemphylium eturmiunum in the field.


Asunto(s)
Ascomicetos , Ajo , Ascomicetos/genética , Compuestos Bicíclicos con Puentes , Farmacorresistencia Fúngica/genética
2.
Plant Dis ; 104(3): 668-676, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31951509

RESUMEN

Chili anthracnose caused by Colletotrichum spp. is an annual production concern for growers in China. Sterol C14-demethylation inhibitors (DMIs, such as tebuconazole) have been widely used to control this disease for more than three decades. In the current study, of 48 isolates collected from commercial chili farms in Jiangsu Province of China during 2018 and 2019, 8 single-spore isolates were identified as Colletotrichum gloeosporioides and the rest were identified as C. acutatum. To determine whether the DMI resistance of isolates develops in the field, mycelial growth of the 48 isolates was measured in culture medium with and without tebuconazole. In all, 6 of the 8 C. gloeosporioides isolates were resistant to tebuconazole, but all 40 of the C. acutatum isolates were sensitive to tebuconazole. The fitness cost of resistance was low based on a comparison of fitness parameters between the sensitive and resistant isolates of C. gloeosporioides. Positive cross-resistance was observed between tebuconazole and difenconazole or propiconazole, but not prochloraz. Alignment results of the CgCYP51 amino acid sequences from the sensitive and resistant isolates indicated that mutations can be divided into three genotypes. Genotype I possessed four substitutions (V18F, L58V, S175P, and P341A) at the CgCYP51A gene but no substitutions at CgCYP51B, while genotype II had five substitutions (L58V, S175P, A340S, T379A, and N476T) at CgCYP51A, concomitant with three substitutions (D121N, T132A, and F391Y) at CgCYP51B. In addition, genotype III contained two substitutions (L58V and S175P) at CgCYP51A, concomitant with one substitution (T262A) at CgCYP51B. Molecular docking models illustrated that the affinity of tebuconazole to the binding site of the CgCYP51 protein from the resistant isolates was decreased when compared with binding site affinity of the sensitive isolates. Our findings provide not only novel insights into understanding the resistance mechanism to DMIs, but also some important references for resistance management of C. gloeosporioides on chili.


Asunto(s)
Colletotrichum , Fungicidas Industriales , China , Simulación del Acoplamiento Molecular , Mutación , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...