Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Qual Manag Health Care ; 33(3): 160-165, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941582

RESUMEN

OBJECTIVES: The purpose of this research was to assess the effect of telehealth management via WeChat on improving the quality of life of patients after percutaneous coronary intervention (PCI). METHODS: In this study, we retrospectively collected the clinical data of 118 patients who underwent PCI and received remote health management from our hospital via WeChat from June 2021 to September 2021 (WeChat group). The clinical data of 114 patients who underwent PCI but did not receive remote health management from our hospital from September 2020 to December 2020 were also collected (conventional group). Anxiety, depression, and quality of life scale scores were compared between the 2 groups at 6 months postdischarge. RESULTS: Six months postdischarge, patients in the WeChat group had significantly lower Self-rating Anxiety Scale (SAS) (55.7 ± 7.2 vs 58.8 ± 6.4, P = .001) and Self-rating Depression Scale (SDS) (56.0 ± 5.9 vs 58.2 ± 6.2, P = .007) scores than did those in the conventional group. Compared to those in the conventional group, the patients in the WeChat group had significantly greater 6 months post-discharge The World Health Organization Quality of Life - BREF scores in the following domains: physical (14.3 ± 1.7 vs 13.1 ± 1.7, P < .001 psychological (15.2 ± 1.3 vs 13.5 ± 1.5, P < .001 social relationship (12.9 ± 1.7 vs 12.3 ± 1.8, P = .01) and environmental (12.7 ± 2.0 vs 12.0 ± 1.9, P = .006). CONCLUSION: The use of WeChat to carry out remote health management for patients who underwent PCI can be an effective way to provide high-quality hospital medical services to patients' families and can effectively alleviate patients' anxiety and depression and enhance their quality of life.


Asunto(s)
Ansiedad , Depresión , Intervención Coronaria Percutánea , Calidad de Vida , Telemedicina , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano
2.
Chemosphere ; 362: 142658, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901706

RESUMEN

Since traditional photocatalysts have suffered from higher charge carrier recombination and moderate photocatalytic efficiency, developing photocatalysts is crucial for water treatment objectives. Hence, the various ratios of TiO2 on g-C3N4 (CN) to form nano photocatalysts were synthesized by the solvothermal method. The 30%TiO2/CN showed the best performance to degradation and debromination of 4-bromophenol (4-BP) solution completely (kobs = 6.6 × 10-2 min-1) under visible light emitted by LED (420 nm) in 30 min. Remarkably, the photocatalyst showed superior stability and reusability, maintaining its efficiency after four cycles of 4-BP degradation. The dominant ROS participating in 4-BP degradation were ●O-2 and photogenerated holes (h+), as investigated by free radical scavenging tests. The optical properties analysis revealed that the introduction of TiO2 to the bulk CN decreases electron-hole recombination and improve photocatalytic performance by facilitating electrons transfer through the TiO2 nanoparticles in a chain. The findings of this study showed that the TiO2/CN photocatalyst is a promising catalyst for the degradation of 4-BP. It exhibits a higher rate constant and photocatalytic efficiency compared with previous studies conducted under visible light irradiation.

3.
Hand Surg Rehabil ; 43(3): 101708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670343

RESUMEN

Open reduction with internal fixation is a common approach for treating distal radius fractures. However, complications such as extensor tendon rupture can occur following this procedure. In this case report, we present a patient who experienced extensor tendon rupture following volar plate fixation of a distal radius fracture. The rupture was diagnosed preoperatively using ultrasound. We highlight the potential usefulness of ultrasound as a convenient and sensitive tool for diagnosing tendon injuries in patients with suspected complications following internal fixation of distal radius fractures. Furthermore, we discuss how ultrasound images can aid in localizing the site of tendon rupture and guide surgical incisions for smaller postoperative wound care, resulting in improved cosmetic outcomes.


Asunto(s)
Fijación Interna de Fracturas , Fracturas del Radio , Traumatismos de los Tendones , Ultrasonografía , Humanos , Fracturas del Radio/cirugía , Fracturas del Radio/diagnóstico por imagen , Traumatismos de los Tendones/diagnóstico por imagen , Traumatismos de los Tendones/cirugía , Rotura/diagnóstico por imagen , Rotura/cirugía , Masculino , Placas Óseas , Cuidados Preoperatorios , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Persona de Mediana Edad , Femenino , Fracturas de la Muñeca
4.
Chemosphere ; 355: 141710, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493998

RESUMEN

Natural organic matter is a mixture of microbial decomposition products widely found in surface and groundwater. These organic materials have great potential as carbon-based precursors for chemical synthesis. This work demonstrated the development of a green photocatalyst via a facile adsorption process that combined colloidal titanium dioxide (TiO2) with humic acid. The resulting photocatalyst was visible light active and able to completely degrade 5 mg/L of BPA within 6 h under the irradiation of energy-efficient LED white light. The first-order kinetic rate constant of the reaction was determined to be 1.7 × 10-2 min-1. The enhanced photocatalytic activity was attributed to the decreased band gap energy and effective charge separation that limits the photogenerated electron-hole recombination. The outcome of this research opened an opportunity for the development of sustainable functional materials using natural organic matter.


Asunto(s)
Compuestos de Bencidrilo , Sustancias Húmicas , Luz , Fenoles/química , Titanio/química , Catálisis
5.
Europace ; 25(12)2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38042981

RESUMEN

AIMS: This study aimed to investigate the effectiveness of closed-loop stimulation (CLS) pacing compared with the traditional DDD mode in patients with chronotropic incompetence (CI) using bicycle-based cardiopulmonary exercise testing (CPET). METHODS AND RESULTS: This single-centre, randomized crossover trial involved 40 patients with CI. Patients were randomized to receive either DDD-CLS or DDD mode pacing for 2 months, followed by a crossover to the alternative mode for an additional 2 months. Bicycling-based CPET was conducted at the 3- and 5-month follow-up visits to assess exercise capacity. Other cardiopulmonary exercise outcome measures and health-related quality of life (QoL) were also assessed. DDD-CLS mode pacing significantly improved exercise capacity, resulting in a peak oxygen uptake (14.8 ± 4.0 vs. 12.0 ± 3.6 mL/kg/min, P < 0.001) and oxygen uptake at the ventilatory threshold (10.0 ± 2.2 vs. 8.7 ± 1.8 mL/kg/min, P < 0.001) higher than those of the DDD mode. However, there were no significant differences in other cardiopulmonary exercise outcome measures such as ventilatory efficiency of carbon dioxide production slope, oxygen uptake efficiency slope, and end-tidal carbon dioxide between the two modes. Patients in the DDD-CLS group reported a better QoL, and 97.5% expressed a preference for the DDD-CLS mode. CONCLUSION: DDD-CLS mode pacing demonstrated improved exercise capacity and QoL in patients with CI, highlighting its potential as an effective pacing strategy for this patient population.


Asunto(s)
Estimulación Cardíaca Artificial , Calidad de Vida , Humanos , Estimulación Cardíaca Artificial/métodos , Dióxido de Carbono , Ciclismo , Tolerancia al Ejercicio , Estudios Cruzados , Prueba de Esfuerzo , Oxígeno , Frecuencia Cardíaca/fisiología
6.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003299

RESUMEN

Glycerol-3-phosphate acyltransferase GPAT9 catalyzes the first acylation of glycerol-3-phosphate (G3P), a committed step of glycerolipid synthesis in Arabidopsis. The role of GPAT9 in Brassica napus remains to be elucidated. Here, we identified four orthologs of GPAT9 and found that BnaGPAT9 encoded by BnaC01T0014600WE is a predominant isoform and promotes seed oil accumulation and eukaryotic galactolipid synthesis in Brassica napus. BnaGPAT9 is highly expressed in developing seeds and is localized in the endoplasmic reticulum (ER). Ectopic expression of BnaGPAT9 in E. coli and siliques of Brassica napus enhanced phosphatidic acid (PA) production. Overexpression of BnaGPAT9 enhanced seed oil accumulation resulting from increased 18:2-fatty acid. Lipid profiling in developing seeds showed that overexpression of BnaGPAT9 led to decreased phosphatidylcholine (PC) and a corresponding increase in phosphatidylethanolamine (PE), implying that BnaGPAT9 promotes PC flux to storage triacylglycerol (TAG). Furthermore, overexpression of BnaGPAT9 also enhanced eukaryotic galactolipids including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), with increased 36:6-MGDG and 36:6-DGDG, and decreased 34:6-MGDG in developing seeds. Collectively, these results suggest that ER-localized BnaGPAT9 promotes PA production, thereby enhancing seed oil accumulation and eukaryotic galactolipid biosynthesis in Brassica napus.


Asunto(s)
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Galactolípidos/metabolismo , Glicerol/metabolismo , Escherichia coli/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Semillas/genética , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Fosfatidicos/metabolismo , Aceites de Plantas/metabolismo , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Sci Total Environ ; 904: 166825, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673252

RESUMEN

With the increasing synthesis and application of carbon quantum dots (CQDs), their prevalence as pollution in water environments has increased. However, the toxic effects of CQDs on aquatic organisms are unclear, and their environmental safety must be evaluated. Herein, Daphnia magna was used as a model organism to explore the developmental toxicity of CQDs under a full life-cycle exposure. It was found that the feeding rate and offing number of D. magna decreased with increasing CQD concentration, and the body length of D. magna showed a trend of first increasing and then decreasing. These results indicated that long-term exposure to CQDs has evident toxic effects on D. magna development. Symbiosis analysis showed that the composition of the symbiotic microbial community of D. magna was disturbed by CQDs. The abundance of microorganisms involved in the immune response of D. magna such as Rhodobacter, decreased; those involved in the inflammation such as Gemmobacter, increased; and those involved in the nitrogen cycle, such as Hydrogenophaga and Paracoccus, decreased. When D. magna was subjected to environmental pressure, host-microflora interactive immune regulation was induced. The abundance of probiotics in D. magna, such as Rhodococcus, increased in response to environmental pressure. The results of KEGG function prediction showed that the abundance of symbiotic microorganisms involved in energy absorption and metabolism was affected by CQDs. In addition, the correlation analysis showed that there was a correlation between the changes in the symbiotic microbial community and the damage to D. magna after exposure to CQDs. Thus, it is appealed that as a potential environmental pollutant, CQDs have aquatic environmental risks, and their safe application deserves attention.


Asunto(s)
Puntos Cuánticos , Contaminantes Químicos del Agua , Animales , Carbono/metabolismo , Daphnia , Simbiosis , Contaminantes Químicos del Agua/metabolismo
8.
Hu Li Za Zhi ; 70(5): 91-97, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37740269

RESUMEN

Important concepts in leadership management related to the field of medical care management include servant leadership, charismatic leadership, and transformational leadership. Since the 2020 emergence of the coronavirus pandemic, the world has faced the immediate challenges of epidemic prevention and control. Although national government and medical system officials as well as scholars have weighed in on this issue, their leadership does not appear to line up the core ideas of leadership. Daft and Lengel (2000) examined the influence of fusion leadership on individuals and organizations. The fusion of many nuclei of leadership intentions will produce great power and influence. To elucidate the concept of integrated leadership for individuals and organizations in the post-pandemic healthcare system, this paper summarizes the defining characteristics of fusion leadership based on the conceptual analysis method of Walker and Avant (2019). Concurrently, we confirm the antecedents and consequences of fusion leadership, use different cases to illustrate the analysis, and share the reference indicators and measurements of fusion leadership to provide a reference for healthcare system administrators.


Asunto(s)
Infecciones por Coronavirus , Liderazgo , Humanos , Intención , Pandemias
9.
Int J Biol Macromol ; 238: 124087, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36940766

RESUMEN

Gas therapy based on nitric oxide (NO) has emerged as a potential therapeutic approach for cancer, and in conjunction with multi-mode combination therapy, offers new possibilities for achieving significant hyperadditive effects. In this study, an integrated AI-MPDA@BSA nanocomposite for diagnosis and treatment was constructed for PDA based photoacoustic imaging (PAI) and cascade NO release. Natural NO donor L-arginine (L-Arg) and photosensitizer (PS) IR780 were loaded into mesoporous polydopamine (MPDA). Bovine serum albumin (BSA) was conjugated to the MPDA to increase the dispersibility and biocompatibility of the nanoparticles, as well as to serve as a gatekeeper controlling IR780 release from the MPDA pores. The AI-MPDA@BSA produced singlet oxygen (1O2) and converted it into NO through a chain reaction based on L-Arg, enabling a combination of photodynamic therapy and gas therapy. Moreover, due to the photothermal properties of MPDA, the AI-MPDA@BSA performed good photothermal conversion, which allowed photoacoustic imaging. As expected, both in vitro and in vivo studies have confirmed that the AI-MPDA@BSA nanoplatform has a significant inhibitory effect on cancer cells and tumors, and no apparent systemic toxicity or side effects were detected during the treatment period.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Albúmina Sérica Bovina , Óxido Nítrico , Neoplasias/terapia
10.
Sci Total Environ ; 862: 160830, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526190

RESUMEN

Livestock wastewater has been reused for agricultural irrigation to save water and fertilise the soil. However, micropollutants excreted by livestock animals may contaminate the soil and crops through livestock wastewater irrigation. This study employed high-resolution mass spectrometry (HRMS) to facilitate broad-scope suspect screening of soil and vegetables and identify changes in micropollutant fingerprints caused by swine wastewater irrigation. Field trials were performed to simulate the practical cultivation of small leafy vegetables. Soil and pak choi were irrigated with groundwater, a reasonable amount of swine wastewater, and excessive swine wastewater (three times the reasonable amount) and were sampled at three time points. The samples were extracted using organic solvents and analysed with a liquid chromatography-quadrupole-time-of-flight HRMS system. The molecular features were compared to over 3000 micropollutants in commercial libraries. The relative concentrations of suspect micropollutants among the irrigation groups were compared using multivariate and univariate analyses. The marker micropollutants that increased with swine wastewater irrigation were rigorously identified based on the MS/MS spectra. Fifty-three micropollutants were frequently found in the soil (n = 54) and 36 in the pak choi (n = 53). Partial least squares discriminant analysis (PLS-DA) models revealed significant differences in the micropollutant fingerprints in the soil among the three irrigation groups, but not in the pak choi. Eight micropollutants with variable importance in projection scores above 1.0 in the PLS-DA model and significantly higher relative concentrations (p < 0.05) in the soil irrigated with swine wastewater were confirmed as markers. Besides veterinary drugs and their metabolites, cinnamic acid and phenylalanine were the markers relevant to swine feed that were not previously reported. Nevertheless, accumulations of micropollutants in the soil or contamination of the pak choi due to swine wastewater irrigation were not found under the trial conditions.


Asunto(s)
Contaminantes del Suelo , Aguas Residuales , Animales , Porcinos , Verduras , Suelo/química , Espectrometría de Masas en Tándem , Riego Agrícola/métodos , Contaminantes del Suelo/análisis , Ganado
11.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5113-5120, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36472018

RESUMEN

Non-alcoholic fatty liver disease(NAFLD), as a metabolic stress liver injury disease, is one of the most common chronic liver diseases, which seriously threatens people's health. The pathogenesis of NAFLD is very complex. A large number of studies show that the hepatic mitochondrial dysfunction leads to the disorder of hepatic glucose and lipid metabolism, oxidative stress, and inflammation, thus inducing hepatocyte apoptosis, which plays an important role in the progression of NAFLD. In recent years, researchers have begun to focus on developing drugs that slowed the progression of NAFLD by regulating the hepatic mitochondrial function. Chinese medicine has a good curative effect on the treatment of NAFLD, with the advantages of high safety and few side effects. Various studies have shown that Chinese medicine prevented and treated NAFLD by regulating the mitochondrial function. Therefore, this paper summarized the relationship between NAFLD and mitochondria, and the mechanism of Chinese medicine(single Chinese medicine, Chinese medicine monomer, and Chinese medicine compound prescription) in the prevention and treatment of NAFLD by regulating mitochondrial function. This paper is expected to provide references for clinical application of traditional Chinese medicine in the treatment of NAFLD by regulating mitochondrial function.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Medicina Tradicional China/efectos adversos , Hígado , Mitocondrias/patología , Metabolismo de los Lípidos
12.
Cells ; 11(21)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36359744

RESUMEN

The safety and efficacy of tumor treatment are difficult problems to address. Recently, lysosomes have become an important target for tumor treatment because of their special environment and function. Nanoparticles have unique physicochemical properties which have great advantages in tumor research. Therefore, in recent years, researchers have designed various types of nanoparticles to treat tumors based on lysosomal function and environment. In this review, we summarize and analyze different perspectives of tumor treatment, including direct destruction of lysosomes or lysosomal escape, drug delivery by nanoparticles, response to endogenous or exogenous stimuli, and the targeting of tumor cells or other cells. We describe the advantages and disadvantages of these approaches as well as the developmental prospects in this field. We hope to provide new ideas for better tumor treatment.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Lisosomas , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
13.
Environ Sci Eur ; 34(1): 104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284750

RESUMEN

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

14.
PeerJ ; 10: e13764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910779

RESUMEN

Objective: This study aims to determine the factors associated with patient care manager role and the implementation of the clinical pathway among nurses in private hospitals. Methods: This study was conducted from January-July 2021 using the cross-sectional approach. The sample consisted of 168 nurses working in a private hospital in Surabaya City, East Java, Indonesia. Meanwhile, the data were collected using the Patient Care Manager Role Scale (PCMRS) and analyzed by multiple logistic regression to find the correlation between the variables. Results: A higher percentage of nurses namely 64.3% had compliance in COVID-19 clinical pathways with an average PCMRS score of 27.81 ± 2.43. Nurses with a high-level patient care manager role level had a significant compliance risk with odds ratio [OR] 440.137, 95% confidence interval [CI] [51.850-3736.184], and p-value = 0.000 compared to those with a low role. Conclusion: The role of patient care manager and compliance with COVID-19 clinical pathways correlated significantly. Based on the results, several actions are needed for the early identification of patient service managers' roles to ensure compliance with COVID-19 clinical pathways and reduce the number of cases in Indonesia.


Asunto(s)
COVID-19 , Vías Clínicas , Humanos , Estudios Transversales , COVID-19/epidemiología , Atención al Paciente , Hospitales Privados
15.
Pharmaceutics ; 14(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35745773

RESUMEN

In this study, a pH-responsive controlled-release mesoporous silica nanoparticle (MSN) formulation was developed. The MSNs were functionalized with a histidine (His)-tagged targeting peptide (B3int) through an amide bond, and loaded with an anticancer drug (cisplatin (CP)) and a lysosomal destabilization mediator (chloroquine (CQ)). Cu2+ was then used to seal the pores of the MSNs via chelation with the His-tag. The resultant nanoparticles showed pH-responsive drug release, and could effectively target tumor cells via the targeting effect of B3int. The presence of CP and Cu2+ permits reactive oxygen species to be generated inside cells; thus, the chemotherapeutic effect of CP is augmented by chemodynamic therapy. In vitro and in vivo experiments showed that the nanoparticles are able to effectively kill tumor cells. An in vivo cancer model revealed that the nanoparticles increase apoptosis in tumor cells, and thereby diminish the tumor volume. No off-target toxicity was noted. It thus appears that the functionalized MSNs developed in this work have great potential for targeted, synergistic anticancer therapies.

16.
J Hazard Mater ; 430: 128465, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739659

RESUMEN

Hexabromocyclododecanes (HBCDs) are globally prevalent and persistent organic pollutants (POPs) listed by the Stockholm Convention in 2013. They have been detected in many environmental media from waterbodies to Plantae and even in the human body. Due to their highly bioaccumulative characterization, they pose an urgent public health issue. Here, we demonstrate that the indigenous microbial community in the agricultural soil in Taiwan could decompose HBCDs with no additional carbon source incentive. The degradation kinetics reached 0.173 day-1 after the first treatment and 0.104 day-1 after second exposure. With additional C-sources, the rate constants decreased to 0.054-0.097 day-1. The hydroxylic debromination metabolites and ring cleavage long-chain alkane metabolites were identified to support the potential metabolic pathways utilized by the soil microbial communities. The metagenome established by Nanopore sequencing showed significant compositional alteration in the soil microbial community after the HBCD treatment. After ranking, comparing relative abundances, and performing network analyses, several novel bacterial taxa were identified to contribute to HBCD biotransformation, including Herbaspirillum, Sphingomonas, Brevundimonas, Azospirillum, Caulobacter, and Microvirga, through halogenated / aromatic compound degradation, glutathione-S-transferase, and hydrolase activity. We present a compelling and applicable approach combining metagenomics research, degradation kinetics, and metabolomics strategies, which allowed us to decipher the natural attenuation and remediation mechanisms of HBCDs.


Asunto(s)
Hidrocarburos Bromados , Microbiota , Contaminantes del Suelo , Humanos , Hidrocarburos Bromados/análisis , Metagenómica , Suelo
17.
Food Chem ; 394: 133538, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35759841

RESUMEN

Mislabelling the geographic origin of same-species aquaculture products is difficult to identify. This study applied untargeted small-molecule fingerprinting to discriminating between Atlantic salmon originating from Chile and Norway. The acquired liquid chromatography-high-resolution mass spectrometry data from Chilean (n = 32) and Norwegian (n = 29) salmon were chemometrically processed. The partial least squares discriminant analysis (PLS-DA) models successfully discriminated between Chilean and Norwegian salmon at both positive and negative ionisation modes (R2 > 0.96, Q2 > 0.81). Univariate analyses facilitated the selection of approximately 100 candidate markers with high statistical confidence (> 95%). Of these, 37 confirmed markers of Chilean and Norwegian salmon were primarily associated with feed formulations, including lipid derivatives and feed additives. None of the markers were residues or contaminants of potential food safety concern.


Asunto(s)
Salmo salar , Animales , Acuicultura , Cromatografía Liquida , Inocuidad de los Alimentos , Alimentos Marinos/análisis
18.
RSC Adv ; 12(5): 3073-3080, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425318

RESUMEN

Developing highly sensitive and selective methods for Cu2+ detection in living systems is of great significance in clinical copper-related disease diagnosis. In this work, a near infrared (NIR) fluorescent probe, CySBH, with a salicylaldehyde benzoyl hydrazone group as a selective and sensitive receptor for Cu2+ was designed and synthesized. The specific coordination of the salicylaldehyde benzoyl hydrazone group in CySBH with Cu2+ can induce a distinct quench of the fluorescence intensity, allowing for real-time tracking of Cu2+. We have demonstrated that CySBH could rapidly recognize Cu2+ with good selectivity and high sensitivity. Moreover, on the basis of low cell cytotoxicity, the probe was used to visualize Cu2+ in two cell lines by fluorescence imaging. Furthermore, CySBH can also be used to monitor Cu2+ in vivo due to its NIR emission properties. These overall results illustrate that the NIR fluorescent probe CySBH provides a novel approach for the selective and sensitive monitoring of Cu2+ in living systems.

19.
ACS Chem Neurosci ; 13(8): 1143-1164, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35394271

RESUMEN

The accumulation of ß-sheet-rich α-synuclein (α-Syn) protein in human brain cells is a pathological hallmark of Parkinson's disease (PD). Moreover, it has been reported that familial PD mutations (A30P, E46K, H50Q, G51D, and A53T) accumulate at an accelerated rate both in vivo and in vitro. In addition, accumulations of various C-terminal α-Syn truncations, such as C-terminal-truncated N103 α-synuclein (N103), were found in an aggregated form in the brain tissue of PD patients. Fluorescent protein-tagged wild-type α-Syn, A30P, E46K, H50Q, G51D, A53T, and N103 were transfected into HEK293T and SHSY5Y cells, and their diffusion behaviors were investigated with a custom-built fluorescence microscope system. Based on our experimental results, the oligomerization of α-Syn is a time-dependent process in both HEK293T and SHSY5Y cells, and the oligomer state approaches a plateau after 48 h of transfection. The change in the oligomeric state of E46K, H50Q, and G51D exhibited a similar trend to the wild type at a lower concentration but became intense at a higher concentration. A53T and N103 possess smaller diffusion coefficients than wild-type α-synuclein and other family PD mutations, indicating that these two mutants could form higher oligomeric states or stronger interactions in HEK293T and SHSY5Y cells. In contrast, the smallest oligomer and the lowest intracellular interaction among all investigated α-Syn variants were found for A30P. These phenomena indicated the presence of different pathogeneses among familial PD mutants and C-terminal α-Syn truncations.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Células HEK293 , Humanos , Mutación/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Chemosphere ; 294: 133744, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35093422

RESUMEN

Sulfamethoxazole (SMX) is largely prescribed for bacterial infections but raises a major concern over generation of antibiotic-resistant bacteria in the environment. This study employed various perovskite-type photocatalysts, made by two-step synthesis procedures, to remove SMX. The as-synthesized CaCu3Ti4O7 (CCTO) perovskites were characterized by XRD, SEM-EDX, and DLS. Complete degradation (∼99%; kobs = 0.0279 min-1) of SMX was recorded under UV-light irradiation for 90 min in the presence of CCTO. SMX removal rate was investigated under various reaction conditions including pH, catalyst dose, electrolyte (NaCl and NaBr). The astonishing rate of SMX removal (kobs = 0.0614 min-1) was observed with the addition of 50 mM NaBr electrolytes in the reaction, which might imply that the appearance of halogen reactive species. CCTO-MS particles were aggregated in traces when the electrolytes concentration increases, resulting in reduced rate of SMX. The SMX concentration abatement and the formation of possible intermediates during photocatalytic reaction were analyzed. The upshot of this study reveals that the inexpensive and environmentally benign CCTO perovskite photocatalyst could be applied for the treatments of emerging contaminants in the future.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Compuestos de Calcio , Óxidos , Sulfametoxazol/química , Titanio , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...