Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 185: 114288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658074

RESUMEN

In this paper, the effect of monosodium glutamate (MSG) on coconut protein (CP) solubility, surface hydrophobicity, emulsification activity, ultraviolet spectroscopy and fluorescence spectroscopy was investigated. Meanwhile, the changes in the in vitro digestive properties of coconut milk were also further analyzed. MSG treatment altered the solubility and surface hydrophobicity of CP, thereby improving protein digestibility. Molecular docking showed that CP bound to pepsin and trypsin mainly through hydrogen bonds and salt bridges. And MSG increased the cleavable sites of pepsin and trypsin on CP, thus further improving the protein digestibility. In addition, MSG increased the Na+ concentration in coconut milk, promoted flocculation and aggregation between coconut milk droplets, which prevented the binding of lipase and oil droplets and inhibited lipid digestion. These findings may provide new ideas and insights to improve the digestive properties of plant-based milk.


Asunto(s)
Cocos , Digestión , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Proteínas de Plantas , Glutamato de Sodio , Solubilidad , Glutamato de Sodio/química , Digestión/efectos de los fármacos , Cocos/química , Proteínas de Plantas/química , Tripsina/metabolismo , Tripsina/química , Pepsina A/metabolismo , Pepsina A/química
2.
Nat Chem ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658798

RESUMEN

Natural gap junctions are a type of channel protein responsible for intercellular signalling and mass communication. However, the scope of applications for these proteins is limited as they cannot be prepared at a large scale and are unable to spontaneously insert into cell membranes in vitro. The construction of artificial gap junctions may provide an alternative strategy for preparing analogues of the natural proteins and bottom-up building blocks necessary for the synthesis of artificial cells. Here we show the construction of artificial gap junction channels from unimolecular tubular molecules consisting of alternately arranged positively and negatively charged pillar[5]arene motifs. These molecules feature a hydrophobic-hydrophilic-hydrophobic triblock structure that allows them to efficiently insert into two adjacent plasma membranes and stretch across the gap between the two membranes to form gap junctions. Similar to natural gap junction channels, the synthetic channels could mediate intercellular signal coupling and reactive oxygen species transmission, leading to cellular activity.

3.
Food Res Int ; 177: 113806, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225110

RESUMEN

Vibrio parahaemolyticus (V. parahaemolyticus) is the main pathogenic bacteria in seafood that can cause serious food-borne illness. The annual incidence of V. parahaemolyticus infection in the United States exceeds 45,000 cases, indicating there are potential shortcomings in seafood sterilization techniques. Meanwhile, the ongoing emergence of antibiotic-resistant strains highlights the urgent need for novel bacteriostatic strategies to eliminate V. parahaemolyticus. Nano-BiPO4 is a semiconductor with high H2O2 production efficiency and has potential for photocatalytic bacterial inactivation. But the effectiveness and mechanism of BiPO4 photocatalytic inactivation of V. parahaemolyticus has not been reported. In this study, nano-BiPO4 synthesized in pure water (P1) was found to exhibit optimal H2O2 production efficiency (1203 µmol h-1g-1) and antibacterial activity (in 0.8 g/L). Under UV light irradiation, P1 induced alterations in bacterial cell morphology, elevation in intracellular levels of ROS, H2O2, O2-, GSSG and MDA, and reduction in GSH level. Meanwhile, metabolomic analysis revealed that P1 stimulates the arginine biosynthesis, TCA cycle and alanine, aspartate and glutamate metabolism. These abnormal changes in the oxidative stress indicators and metabolic pathways proved that the bacterial damage was related to the H2O2 produced by nano-BiPO4 photocatalysis. Moreover, sliced abalone and hemolysis assay were used to demonstrate the applicability and biosafety of P1. This study provides theoretical support for exploring nano-BiPO4 as a bacterial inhibitor against V. parahaemolyticus.


Asunto(s)
Gastrópodos , Vibrio parahaemolyticus , Animales , Peróxido de Hidrógeno/metabolismo , Alimentos Marinos/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo
4.
Foods ; 13(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254545

RESUMEN

The aim of this study was to investigate the bacterial inhibitory ability and mechanism of action of linalyl alcohol against B. thermosphacta. Linalyl alcohol causes the leakage of intracellular material by disrupting the cell wall and exposing the hydrophobic phospholipid bilayer, which binds to bacterial membrane proteins and alters their structure. In addition, linalyl alcohol causes cell membrane damage by affecting fatty acids and proteins in the cell membrane. By inhibiting the synthesis of macromolecular proteins, the normal physiological functions of the bacteria are altered. Linalyl alcohol binds to DNA in both grooved and embedded modes, affecting the normal functioning of B. thermosphacta, as demonstrated through a DNA interaction analysis.

5.
Food Chem X ; 20: 100984, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144867

RESUMEN

This research aimed to investigate the effects of protein concentration (0.2 %-1.0 %), ionic strength (100-500 mM NaCl), and heat treatment (temperature: 80 and 90℃; time: 15 and 30 min) on the interfacial and emulsifying properties of coconut globulins (CG). When protein concentration was set at 0.2-0.6 %, the interfacial adsorption increased with the increasing of protein concentration. However, the lowest interfacial viscoelasticity was found when CG concentration was 0.6 %. When the protein concentration was higher than 0.6 %, the dilatational viscoelasticity increased with the increasing of protein concentration. The protein concentration showed positive effect on the emulsion stability of CG. The ionic strength showed positive effect on the interfacial adsorption but negative effects on the interfacial viscoelasticity and emulsion stability. Higher temperature and longer heating time brought worse interface behavior. The heated CG (90℃, 30 min) had the worst interfacial behavior but the best emulsion stability.

6.
J Texture Stud ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38029426

RESUMEN

To reduce the adverse physical effects on the oral mucosa caused by excessive hardness of betel nut fibers, steam explosion was used to soften betel nuts. The effect of three operating parameters (pressure holding time, explosion pressure, and initial moisture content) on the morphology, texture, and chemical composition of the betel nuts was investigated. The fiber hardness and Shore hardness decreased by 56.17%-89.28% and 7.03%-34.29%, respectively, and the transverse tensile strength and fiber tensile strength also decreased by up to 60.72% and 24.62%, respectively. Moreover, the coefficient of static friction and moisture content increased. After steam explosion, the betel nut increased in transverse diameter, became darker and more yellow-red in color, and showed a damaged microstructure. The contents of free phenol and alkaloids decreased after steam explosion treatment, with free phenols and total alkaloids decreasing from 34.32 mg(GAE)/g and 7.84 mg/g to 21.58 mg(GAE)/g and 6.50 mg/g, respectively, after the A-50 s treatment condition. The steam explosion increased the quantity of phenols, alkaloids, and soluble solids released from the betel nut under the same simulated release conditions of the texture analyzer. The research also showed that increased pressure holding time and explosion pressure enhanced the explosion efficiency, while the initial moisture content was reduced the explosion efficiency. Therefore, steam explosion is an effective pretreatment approach to soften betel nut and facilitate healthy development of the betel nut industry.

7.
Food Chem X ; 19: 100837, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780265

RESUMEN

Meat is often contaminated by food-borne pathogens, resulting in significant economic losses. Linalool from plant essential oils (EOs) has been reported to have excellent antibacterial properties. Therefore, this study aims to elucidate the mechanism of linalool against Shigella sonnei (S. sonnei) based on proteomic and physiological indicators. The results indicated that linalool severely perturbed the expression levels of intracellular proteins, of which 208 were up-regulated and 49 were down-regulated. Moreover, linalool exerted its inhibitory effect mainly through the induction of amino acid limitation and insufficient energy levels based on the pathways involved in differential expressed proteins (DEPs). After 8 h, alkaline phosphatase (AKP) leakage increased 20.96 and 21.52-fold in the MIC and 2MIC groups while protein leakage increased 2.17 and 2.50-fold, respectively, which revealed the potential of linalool on cell structure damage combined with nucleic acid leakage. In addition, the ATP content decreased to 36.92% and 18.84% in the MIC and 2MIC groups, respectively when processed for 8 h. In particular, linalool could effectively control the quality change of fresh beef by measuring pH, total volatile basic nitrogen (TVB-N), total viable counts (TVC) while not affecting its sensory acceptability based on the result of sensory evaluation. This research provides theoretical insights for the development of linalool as a new natural antibacterial agent.

8.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762525

RESUMEN

It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in 'biotargeting' quercetin.


Asunto(s)
Antioxidantes , Quercetina , Antioxidantes/farmacología , Quercetina/farmacología , Peróxido de Hidrógeno , Ácido Ascórbico , Glutatión , Quinonas
9.
J Am Chem Soc ; 145(42): 22945-22953, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37769281

RESUMEN

Darobactin is a heptapeptide antibiotic featuring an ether cross-link and a C-C cross-link, and both cross-links are installed by a radical S-adenosylmethionine (rSAM) enzyme DarE. How a single DarE enzyme affords the two chemically distinct cross-links remains largely obscure. Herein, by mapping the biosynthetic landscape for darobactin-like RiPP (daropeptide), we identified and characterized two novel daropeptides that lack the C-C cross-link present in darobactin and instead are solely composed of ether cross-links. Phylogenetic and mutagenesis analyses reveal that the daropeptide maturases possess intrinsic multifunctionality, catalyzing not only the formation of ether cross-link but also C-C cross-linking and Ser oxidation. Intriguingly, the different chemical outcomes are controlled by the exact substrate motifs. Our work not only provides a roadmap for the discovery of new daropeptide natural products but also offers insights into the regulatory mechanisms that govern these remarkably versatile ether cross-link-forming rSAM enzymes.


Asunto(s)
Éter , S-Adenosilmetionina , S-Adenosilmetionina/química , Filogenia , Éteres , Éteres de Etila , Catálisis
10.
Int J Biol Macromol ; 252: 126139, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543272

RESUMEN

In this study, monosodium glutamate (MSG) was used to improve the viscosity of coconut milk and the underlying mechanism was explored by investigating the changes in structures of coconut milk protein and physicochemical properties of coconut milk. Firstly, the effect of MSG on the properties of coconut milk was studied. The results showed that MSG increased the pH and zeta potential, reduced the particle size, thus enhancing the droplet interaction and increasing the viscosity of coconut milk. Subsequently, the effects of MSG on the structure and properties of coconut proteins (CP) were investigated. FTIR spectroscopy and circular dichroism spectroscopy showed that MSG was able to change the secondary structure of CP. The results of SDS-PAGE showed that MSG was able to bind to CP to form a larger molecular weight protein, thus improving the viscosity of coconut milk. Moreover, MSG was also able to increase the water-binding capacity of CP. In addition, molecular docking and driving force analysis revealed that hydrogen bonds, electrostatic forces, disulfide bonds, and hydrophobic interactions are the main interactions between MSG and CP. Studying the effect of MSG on the viscosity of coconut milk provides theoretical support to improve the viscosity of other plant protein emulsions.


Asunto(s)
Cocos , Glutamato de Sodio , Viscosidad , Emulsiones/química , Cocos/química , Simulación del Acoplamiento Molecular
11.
Int J Biol Macromol ; 244: 125167, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37270123

RESUMEN

This study aimed to prepare sodium alginate-linalool emulsion (SA-LE) to overcome the low solubility of linalool and explore its inhibitory activity against Shigella sonnei. The results indicated that linalool significantly reduced the interfacial tension between SA and oil phase (p < 0.05). Droplet sizes of fresh emulsions were uniform with sizes from 2.54 to 2.58 µm. The ζ-potential was between -23.94 and -25.03 mV, and the viscosity distribution was 973.62 to 981.03 mPa·s at pH 5-8 (near neutral pH) without significant difference. In addition, linalool could be effectively released from SA-LE in accordance with the Peppas-Sahlin model, mainly described by Fickian diffusion. In particular, SA-LE can inhibit S. sonnei with a minimum inhibitory concentration of 3 mL/L, which was lower than free linalool. The mechanism can be described as damaging the membrane structure and inhibiting respiratory metabolism accompanied by oxidative stress based on FESEM, SDH activity, ATP and ROS content. These results suggest that SA is an effective encapsulation strategy to enhance the stability of linalool and its inhibitory effect on S. sonnei at near neutral pH. Moreover, the prepared SA-LE has the potential to be developed as a natural antibacterial agent to address the growing food safety challenges.


Asunto(s)
Alginatos , Shigella sonnei , Emulsiones/química , Alginatos/química , Antibacterianos/farmacología
12.
Foods ; 12(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37174288

RESUMEN

The areca nut is one of the most important cash crops in the tropics and has substantial economic value. However, the research information about the edible quality of different areca nuts is still insufficient. This study compared the composition, texture characteristics and flavor release behaviors of four different areca nuts (AN1, AN2, AN3 and AN4) and two commercially dried areca nuts (CAN1 and CAN2). Results showed that AN1 had higher soluble fiber and lower lignin, which was the basis of its lower hardness. Meanwhile, the total soluble solid (TSS) of AN1 was the highest, which indicated that AN1 had a moister and more succulent mouthfeel. After the drying process, the lignification degree of AN1 was the lowest. Through textural analyses, the hardness of AN1 was relatively low compared to the other dried areca nuts. AN1, CAN1 and CAN2 had higher alkaline pectin content and viscosity, and better flavor retention, which indicated better edible quality. The present study revealed the differences of various areca nuts and provided vital information to further advance the study of areca nuts.

13.
J Nat Prod ; 86(5): 1251-1260, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37196240

RESUMEN

Seven [4 + 2]-type triterpene-diterpene hybrids derived from a rearranged or a normal lanostane unit (dienophile) and an abietane moiety (diene), forrestiacids E-K (1-7, respectively), were further isolated and characterized from Pseudotsuga forrestii (a vulnerable conifer endemic to China). The intriguing molecules were revealed with the guidance of an LC-MS/MS-based molecular ion networking strategy combined with conventional phytochemical procedures. Their chemical structures with absolute configurations were established by spectroscopic data, chemical transformation, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. They all contain a rare bicyclo[2.2.2]octene motif. Both forrestiacids J (6) and K (7) represent the first examples of this unique class of [4 + 2]-type hybrids that arose from a normal lanostane-type dienophile. Some isolates remarkably inhibited ATP-citrate lyase (ACL), with IC50 values ranging from 1.8 to 11 µM. Docking studies corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -9.9 to -10.7 kcal/mol). The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Asunto(s)
Diterpenos , Pseudotsuga , Tracheophyta , Triterpenos , Triterpenos/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diterpenos/química , Estructura Molecular
14.
Foods ; 12(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107372

RESUMEN

The development of functional edible films is promising for the food industry, and improving the water barrier of edible films has been a research challenge in recent years. In this study, curcumin (Cur) was added to zein (Z) and shellac (S) to prepare an edible composite film with a strong water barrier and antioxidant properties. The addition of curcumin significantly reduced the water vapor permeability (WVP), water solubility (WS), and elongation at break (EB), and it clearly improved the tensile strength (TS), water contact angle (WCA), and optical properties of the composite film. The ZS-Cur films were characterized by SEM, FT-IR, XRD, DSC, and TGA; the results indicated that hydrogen bonds were formed among the curcumin, zein, and shellac, which changed the microstructure and improved the thermal stability of the film. A test of curcumin release behavior showed controlled release of curcumin from the film matrix. ZS-Cur films displayed remarkable pH responsiveness, strong antioxidant properties, and inhibitory effects on E. coli. Therefore, the insoluble active food packaging prepared in this study provides a new strategy for the development of functional edible films and also provides a possibility for the application of edible films to extend the shelf life of fresh food.

15.
Front Psychol ; 14: 1078141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777205

RESUMEN

The recent two decades have witnessed a greater interest in L2 writing research to explore how individual learners engage with and participate in peer feedback. However, not much attention has been directed to peer feedback in the collaborative format, despite the fact that peer collaboration can enable learners to draw on their respective strengths and pool their knowledge. In this qualitative study, we adopted an educational psychological perspective to discover the intricate nature of learners working together to give anonymous feedback to their peers. In addition to learners' cognitive engagement with the correction and revision process, we also investigated learners' affective, behavioral, and social engagement in collaborative peer feedback. The findings show that, although learners can cognitively engage with the task by identifying a number of language-related problems and providing feedback, their affective, behavioral, and social engagement differed considerably. While some participants' engagement was relatively extensive, especially in the affective and social aspect, others' engagement was at a relatively limited level, characterized by negative emotions and low mutuality in peer interaction. The unpleasant task experience affected their attitudes toward collaborative peer feedback activities and their willingness to participate in subsequent tasks.

16.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36746436

RESUMEN

AIMS: This study aimed to investigate the mechanism of linalool against Pseudomonas lundensis and its application on beef. METHODS AND RESULTS: Field emission scanning electron microscopy found that linalool exerted antibacterial activity with a minimum inhibitory concentration (MIC) of 1.5 ml l-1 by disrupting cell structure. Loss of cell membrane integrity was monitored due to leakage of nucleic acids and K+. In addition, respiratory depression appeared in Ps. lundensis based on inhibition of enzyme activities including hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PDH), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate dehydrogenase (PDH), citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). Subsequently, energy limitation also occurred according to the decrease in ATP content and ATPase activity. Molecular docking confirmed that linalool can combine with enzymes in cell wall (ddlB) and energy synthesis (AtpD) pathways to exert antibacterial effect. Of note, linalool has advantages for beef preservation by delaying quality changes including pH, total volatile basic nitrogen (TVB-N) and total viable count (TVC). CONCLUSIONS: Linalool has significant inhibitory effect on Ps. lundensis, and respiratory depression driven by membrane damage is the main inhibitory mechanism.


Asunto(s)
Antibacterianos , Insuficiencia Respiratoria , Animales , Bovinos , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología
17.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232887

RESUMEN

Linalool showed a broad-spectrum antibacterial effect, but few studies have elucidated the antibacterial mechanism of linalool on Pseudomonas fragi (P. fragi) to date. The present study aimed to uncover the antimicrobial activity and potential mechanism of linalool against P. fragi by determining key enzyme activities and metabolites combined with a high-throughput method and metabolomic pathway analysis. As a result, linalool had excellent inhibitory activity against P. fragi with MIC of 1.5 mL/L. In addition, the presence of linalool significantly altered the intracellular metabolic profile and a total of 346 differential metabolites were identified, of which 201 were up-regulated and 145 were down-regulated. The highlight pathways included beta-alanine metabolism, pantothenic acid and CoA metabolism, alanine, aspartate and glutamate metabolism, nicotinate and nicotinamide metabolism. Overall, linalool could cause metabolic disorders in cells, and the main metabolic pathways involved energy metabolism, amino acid metabolism and nucleic acid metabolism. In particular, the results of intracellular ATP content and related enzymatic activities (ATPase, SDH, and GOT) also highlighted that energy limitation and amino acid disturbance occurred intracellularly. Together, these findings provided new insights into the mechanism by which linalool inhibited P. fragi and theoretical guidance for its development as a natural preservative.


Asunto(s)
Antiinfecciosos , Niacina , Ácidos Nucleicos , Pseudomonas fragi , Insuficiencia Respiratoria , Monoterpenos Acíclicos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antiinfecciosos/metabolismo , Ácido Aspártico/metabolismo , Coenzima A/metabolismo , Glutamatos/metabolismo , Humanos , Metabolómica , Niacina/metabolismo , Niacinamida/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Pantoténico , Pseudomonas fragi/metabolismo
18.
Foods ; 11(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35885301

RESUMEN

Pseudomonas fragi is the dominant spoilage bacterium that causes the deterioration of chilled meat. Our previous study showed that linalool has potent antibacterial activity against P. fragi, but its antibacterial mechanism is unclear. To explore the antibacterial mechanism of linalool against P. fragi, this study used RNA-seq technology to perform transcriptome analysis of P. fragi samples with or without linalool treatment (1.5 mL/L) for 2 h. The results showed that linalool treatment disrupted the extracellular lipopolysaccharide synthesis pathway in P. fragi and activated fatty acid metabolism and ribosomal function to compensate for cell membrane damage. The energy metabolism of P. fragi was severely disturbed by linalool, and multiple ATP synthases and ATP transportases were overexpressed in the cells but could not guarantee the consumption of ATP. The simultaneous overexpression of multiple ribosomal functional proteins and transporters may also place an additional burden on cells and cause them to collapse.

19.
Front Immunol ; 13: 882216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795676

RESUMEN

Background: Necroptosis, a form of programmed cell death, is increasingly being investigated for its controversial role in tumorigenesis and progression. Necroptosis suppresses tumor formation and tumor development by killing tumor cells; however, the necrotic cells also promote tumor formation and tumor development via the immunosuppressive effect of necroptosis and inflammatory response caused by cytokine release. Thus, the exact mechanism of necroptosis in pan-cancer remains unknown. Methods: The data of 11,057 cancer samples were downloaded from the TCGA database, along with clinical information, tumor mutation burden, and microsatellite instability information of the corresponding patients. We used the TCGA data in a pan-cancer analysis to identify differences in mRNA level as well as single nucleotide variants, copy number variants, methylation profiles, and genomic signatures of miRNA-mRNA interactions. Two drug datasets (from GDSC, CTRP) were used to evaluate drug sensitivity and resistance against necroptosis genes. Results: Necroptosis genes were aberrantly expressed in various cancers. The frequency of necroptosis gene mutations was highest in lung squamous cell carcinoma. Furthermore, the correlation between necroptosis gene expression in the tumor microenvironment and immune cell infiltration varied for different cancers. High necroptosis gene expression was found to correlate with NK, Tfh, Th1, CD8_T, and DC cells. These can therefore be used as biomarkers to predict prognosis. By matching gene targets with drugs, we identified potential candidate drugs. Conclusion: Our study showed the genomic alterations and clinical features of necroptosis genes in 33 cancers. This may help clarify the link between necroptosis and tumorigenesis. Our findings may also provide new approaches for the clinical treatment of cancer.


Asunto(s)
Necroptosis , Neoplasias , Carcinogénesis , Humanos , Necroptosis/genética , Necrosis/genética , Neoplasias/genética , ARN Mensajero , Microambiente Tumoral/genética
20.
Int J Food Microbiol ; 379: 109846, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35908494

RESUMEN

Pseudomonas fragi is primarily responsible for the spoilage of various foods, especially meat. The aim of this study was to investigate the antibacterial mechanism of 3-carene against P. fragi. 3-Carene treatment decreased the phospholipid content and the fluidity of the cell membrane, induced reactive oxygen species (ROS) generation and affected respiratory chain dehydrogenase, oxoglutarate dehydrogenase and citrate synthase in P. fragi. Metabolomics and proteomics analyses further showed that in the presence of 3-carene, 519 proteins, 136 metabolites in positive ion mode and 100 metabolites in negative ion mode were differentially expressed. These proteins and metabolites were primarily involved in amino acid metabolism, fatty acid degradation, the tricarboxylic acid cycle (TCA cycle) and other processes. Consequently, the stimulation of 3-carene altered cell membrane properties, disturbed important amino acid and energy metabolism, and even caused oxidative stress. Additionally, the results of total viable counts and the total volatile base nitrogen indicated that 3-carene could significantly improve the preservation of refrigerated pork. This study suggested that 3-carene has promising potential to be developed as a food preservative.


Asunto(s)
Carne de Cerdo , Pseudomonas fragi , Carne Roja , Aminoácidos/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Monoterpenos Bicíclicos , Metabolómica , Proteómica , Pseudomonas fragi/metabolismo , Carne Roja/microbiología , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA