Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Shanghai Kou Qiang Yi Xue ; 33(1): 30-35, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583021

RESUMEN

PURPOSE: To explore the mechanism of SETDB1 inhibiting epithelial mesenchymal transition (EMT),migration and invasion in oral cancer via SOX 7 methylation. METHODS: SETDB1 and SOX7 mRNA and protein expression levels in KB cells of oral cancer and oral mucosal epithelial ATCC cells were determined by qRT-PCR and Western blot (WB). SETDB1 si-RNA was structured, then transfect into KB cells of oral cancer by liposome-mediated method. siRNA-SETDB1 was the experimental group (si-S), siRNA empty vector was the negative control group (si-N), and untransfected KB cells were the blank control group(NC). SETDB1 mRNA and protein expression levels were detected by qRT-PCR and Western blot(WB), to verify the transfection effect. The methylation levels of SOX7 were determined by pyrosequencing. The expression of N-cadherin, Vimentin, ß-catenin, and Slug proteins was detected by WB. Cell viability was measured by MTT assay, migration ability was tested by scratch healing assay, and invasion ability was tested by Transwell chamber assay. Statistical analysis was performed with SPSS 21.0 software package. RESULTS: The results of Rt-qPCR and WB showed that the SETDB1 mRNA and protein expression decreased significantly in si-S group(P<0.05). Pyrosequencing test results showed that the regulation of SETDB1 could significantly reduce the SOX7 methylation rate and increased the SOX7 protein expression. WB results showed that knockdown of SETDB1 significantly inhibited the expression of EMT-related proteins N-cadherin, Vimentin, ß-catenin and Slug in oral cancer KB cells (P<0.05). The results of cell functology experiments showed that knockdown of SETDB1 could significantly inhibit survival, migration and invasion of KB cells. CONCLUSIONS: Downregulation of SETDB1 could suppress EMT, migration and invasion of oral cancer cells by regulating SOX7 methylation level, providing new ideas and targets for the diagnosis and treatment of oral cancer.


Asunto(s)
Neoplasias de la Boca , Factores de Transcripción SOXF , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Regulación hacia Abajo , Línea Celular Tumoral , Vimentina/genética , Vimentina/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias de la Boca/genética , Transición Epitelial-Mesenquimal , ARN Mensajero/metabolismo , Metilación , Movimiento Celular/genética , Proliferación Celular , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
2.
Chemistry ; 21(23): 8351-4, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25907201

RESUMEN

Two attractive chirons, aldehyde 6 and chloride 7, exhibiting functionalized ent-spongiane-type tricyclic skeletons (ABC ring system), have been constructed and their absolute configurations have been studied by NMR spectroscopy and confirmed by single-crystal X-ray diffraction. Both of these chirons are derived from commercially available andrographolide in good yield. Aldehyde 6 is obtained through a novel K2 S2 O8 -catalyzed aquatic ring-closing reaction of allylic sodium sulfonate and intramolecular 1,7-hydrogen atom transfer process. Further mechanistic investigations demonstrate that the 1,7-hydrogen atom transfer is a free-radical process, whereby hydrogen migrates from C18 to C17, as evidenced by double-18- deuterium-labeled isotope experiments. Prospective applications of these two chiral sources are also discussed.

3.
J Org Chem ; 76(17): 7216-21, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21800844

RESUMEN

The marine natural product 16-deacetoxy-12-epi-scalarafuranacetate, isolated from Spongua officinalis , was synthesized in 18 linear steps, starting from (-)-sclareol, with high stereoselectivity and an overall yield of 6.1%. The intermediate 16-deacetoxy-12-epi-scalarafuran could be easily transformed into a series of natural scalarane sesterterpenoids in a few steps.


Asunto(s)
Diterpenos/química , Sesterterpenos/síntesis química , Estructura Molecular , Sesterterpenos/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...