Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Pharmacol Toxicol Methods ; : 107569, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39461626

RESUMEN

Comparison of the excitability of four different alkaloids/salts, including nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide. Based on positron emission tomography (PET) imaging and 18F-Fallypride, a novel technique for measuring alkaloid/salt excitability in SD rats was developed. Different doses and types of alkaloids/salts were administered to the SD rats in a single nebulised inhalation. The results showed that: (1) PET imaging technology can detect the excitability intensity of SD rats after single inhalation of alkaloids/salts in non-invasive real time and the optimal PET scanning time of four different alkaloids/salts (nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide) were slightly different. (2) The excitatory saturation effect of four alkaloids/salts was observed in SD rats after single inhalation and the saturation effect doses of nicotine, nicotine benzoate, caffeine and arecine hydrobromide were 0.063 mg/kg, 0.075 mg/kg, 0.33 mg/kg and 0.075 mg/kg, respectively. (3) In the case of single inhalation of the same dose of four alkaloids/salts, male SD rats inhaled arecoline hydrobromide with the strongest excitability, while female SD rats inhaled nicotinic benzoate. A PET method for noninvasive real-time detection of alkaloid/salt excitability in SD rats was established. The finding of an excitatory saturation effect for four alkaloids/salts (nicotine, nicotinic benzoate, caffeine and arecoline hydrobromide) and the presence of excitatory intensity and gender differences at the same dose of inhalation of four alkaloids/salts, which provide a new theoretical basis for determiningthe content of alkaloids/salts.

2.
Bioorg Med Chem Lett ; 114: 129987, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395633

RESUMEN

The NLRP3 inflammasome has been extensively studied in recent years and its aberrant activation can exacerbate inflammatory responses, contributing to various diseases. MCC950, a sulfonylurea drug, is a potent selective inhibitor of the NLRP3 inflammasome. However, its clinical development was halted due to hepatotoxicity, and studies have indicated significant reduction in activity among its metabolites. Building upon MCC950, we referenced substitution sites of NP3-146 for structural modifications aimed at addressing potential metabolism-related issues. Consequently, we synthesized a series of sulfonylurea derivatives. Ultimately, the optimized compound C4 exhibited a remarkable 80.39 % inhibition of IL-1ß at 2 µM, with an IC50 value of 0.805 µM. In conclusion, compound C4 shows potential as a lead compound and warrants further development as an anti-inflammatory NLRP3 inhibitor.

3.
Oncol Rep ; 52(6)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39364743

RESUMEN

Colorectal cancer (CRC) ranks as the third most prevalent malignancy and second leading cause of cancer­related fatalities worldwide. Immunotherapy alone or in combination with chemotherapy has a favorable survival benefit for patients with CRC. Unlike αß T cells, which are prone to drug resistance, γδ T cells do not exhibit major histocompatibility complex restriction and can target tumor cells through diverse mechanisms. Recent research has demonstrated the widespread involvement of Vδ1T, Vδ2T, and γδ T17 cells in tumorigenesis and progression. In the present review, the influence of different factors, including immune checkpoint molecules, the tumor microenvironment and microorganisms, was summarized on the antitumor/protumor effects of these cells, aiming to provide insights for the development of more efficient and less toxic immunotherapy­based anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Microambiente Tumoral/inmunología , Inmunoterapia/métodos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos Intraepiteliales/inmunología , Animales
4.
J Med Chem ; 67(19): 17713-17737, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39303278

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease with an elusive etiology. Aberrant activation of c-Jun N-terminal kinase 1 (JNK1) has been implicated in its pathogenesis. Through a combination of structure-based drug design and structure-activity relationship (SAR) optimization, a series of pyrimidine-2,4-diamine scaffold derivatives have been developed as potent JNK1 inhibitors. Compound E1 was identified with low nanomolar JNK1 inhibitory potency (IC50 = 2.7 nM). The introduction of a dimethylamine side chain has significantly enhanced the ability of E1 to inhibit c-Jun phosphorylation, surpassing the clinical candidate CC-90001. Molecular dynamics simulations revealed a binding free energy of -50.46 kcal/mol for E1. Moreover, E1 displayed satisfactory pharmacokinetic properties, with a bioavailability of 69% in rats. Furthermore, compound E1 exerted significant antifibrotic effects in a bleomycin-induced IPF mouse model and prevented a TGF-ß-induced epithelial-to-mesenchymal transition in vitro. These findings position E1 as a promising lead for further drug development targeting IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína Quinasa 8 Activada por Mitógenos , Inhibidores de Proteínas Quinasas , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Animales , Relación Estructura-Actividad , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacocinética , Ratones , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Ratas , Bleomicina , Masculino , Ratas Sprague-Dawley , Simulación de Dinámica Molecular , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Pirimidinas/uso terapéutico , Pirimidinas/farmacocinética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Endogámicos C57BL , Diseño de Fármacos , Estructura Molecular
5.
Protein Sci ; 33(8): e5098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38980003

RESUMEN

Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.


Asunto(s)
Homocisteína , Polimorfismo de Nucleótido Simple , Humanos , Homocisteína/metabolismo , Homocisteína/química , Homocisteína/análogos & derivados , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cinética
6.
Bioorg Med Chem Lett ; 107: 129777, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692522

RESUMEN

Inflammation is the body's defense response to stimuli. When the homeostatic balance is disturbed, disease may result. Flavonoids have clear anti-inflammatory effects and the isopentenyl group significantly enhances the pharmacological activity of flavonoids. Therefore, isopentenyl flavonoids have the potential to serve as lead compounds for the development of anti-inflammatory drugs. Throughout this research, eight natural compounds were synthesized, including 5,7-dihydroxy-4'-methoxy-8-prenylflavonoid (1), 4'-O-Methylatalantoflavone (2), Kushenol W (3) and Racemoflavone (5), which were totally synthesized for the first time. Additionally, three flavonols: Licoflavonol (6), 3,5,7,3',4'-pentahydroxy-6-prenylflavonol (7) and Macarangin (8), can be one-step synthesized by direct C-isopentenylation. In the process, an economical and efficient C-isopentenylation method was also simultaneously explored that could facilitate the efficient synthesis of natural products. These compounds were evaluated for their potential anti-inflammatory activities via the NLRP3 signaling pathway. Notably, Macarangin (8) manifested the most potent inhibitory effect. The SAR (Structure-Activity Relationships) also showed the introduction of the isopentenyl group was determined to enhance these effects, whereas simple flavonoid frameworks or cyclization of isopentenyl groups all diminished anti-inflammatory activity.


Asunto(s)
Flavonoides , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Flavonoides/farmacología , Flavonoides/química , Flavonoides/síntesis química , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Animales , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química , Ratones , Relación Dosis-Respuesta a Droga , Humanos
7.
Proc Natl Acad Sci U S A ; 121(23): e2322359121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805286

RESUMEN

Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.


Asunto(s)
Proteína Adaptadora GRB2 , Sistema de Señalización de MAP Quinasas , Proteínas de Fusión Oncogénica , Proteínas Proto-Oncogénicas c-ret , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Proteínas ras , Humanos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Células HEK293 , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Fosforilación , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas ras/metabolismo , Proteínas ras/genética , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética
8.
Protein Pept Lett ; 30(11): 941-950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946357

RESUMEN

BACKGROUND: UDP-glucuronosyltransferases (UGTs) play a crucial role in maintaining endobiotic homeostasis and metabolizing xenobiotic compounds, particularly clinical drugs. However, the detailed catalytic mechanism of UGTs has not been fully elucidated due to the limited availability of reliable protein structures. Determining the catalytic domain of human UGTs has proven to be a significant challenge, primarily due to the difficulty in purifying and crystallizing the full-length protein. OBJECTIVES: This study focused on the human UGT2B10 C-terminal cofactor binding domain, aiming to provide structural insights into the fundamental catalytic mechanisms. METHODS: In this study, the C-terminal sugar-donor binding domain of human UGT2B10 was purified and crystallized using the vapor-diffusion method. The resulting UGT2B10 CTD crystals displayed high-quality diffraction patterns, allowing for data collection at an impressive resolution of 1.53 Å using synchrotron radiation. Subsequently, the structure of the UGT2B10 CTD was determined using the molecule replacement method with a homologous structure. RESULTS: The crystals were monoclinic, belonging to the space C2 with unit-cell parameters a = 85.90 Å, b = 58.39 Å, c = 68.87 Å, α = γ = 90°, and ß = 98.138°. The Matthews coefficient VM was determined to be 2.24 Å3 Da-1 (solvent content 46.43%) with two molecules in the asymmetric unit. CONCLUSION: The crystal structure of UGT2B10 CTD was solved at a high resolution of 1.53 Å, revealing a conserved cofactor binding pocket. This is the first study determining the C-terminal cofactor binding domain of human UGT2B10, which plays a key role in additive drug metabolism.


Asunto(s)
Nucleótidos , Azúcares , Humanos , Glucuronosiltransferasa/química , Glucuronosiltransferasa/metabolismo , Dominio Catalítico , Uridina Difosfato
9.
Eur J Med Chem ; 256: 115442, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37156184

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe and progressive lung disease with poor prognosis and limited treatment options. The c-Jun N-Terminal Kinase 1 (JNK1), a key component of the MAPK pathway, has been implicated in the pathogenesis of IPF and represents a potential therapeutic target. However, the development of JNK1 inhibitors has been slowed, partly due to synthetic complexity in medicinal chemistry modification. Here, we report a synthesis-accessibility-oriented strategy for designing JNK1 inhibitors based on computational prediction of synthetic feasibility and fragment-based molecule generation. This strategy led to the discovery of several potent JNK1 inhibitors, such as compound C6 (IC50 = 33.5 nM), which exhibited comparable activity to the clinical candidate CC-90001 (IC50 = 24.4 nM). The anti-fibrotic effect of C6 was further confirmed in animal model of pulmonary fibrosis. Moreover, compound C6 could be synthesized in only two steps, compared to nine steps for CC-90001. Our findings suggest that compound C6 is a promising lead for further optimization and development as a novel anti-fibrotic agent targeting JNK1. In addition, the discovery of C6 also demonstrates the feasibility of synthesis-accessibility-oriented strategy in lead discovery.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína Quinasa 8 Activada por Mitógenos , Animales , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/uso terapéutico , Pirimidinas/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Fibrosis , Proteínas Quinasas JNK Activadas por Mitógenos
10.
Org Biomol Chem ; 21(17): 3650-3659, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37067022

RESUMEN

In the presence of alcohol, cocaine metabolism produces a number of metabolites, including three toxic ones (cocaethylene, norcocaine, and norcocaethylene) which are all more toxic than cocaine itself, with the toxicity in the order of cocaine < cocaethylene < norcocaine < norcocaethylene. In this study, we performed kinetic analysis on our previously reported cocaine hydrolase (E30-6) for its catalytic activities accelerating the hydrolysis of the three toxic metabolites in comparison with cocaine. Based on the obtained kinetic data, the in vitro catalytic efficiencies of the enzyme against these substrates are in the order of cocaine > cocaethylene > norcocaine > norcocaethylene. It has been demonstrated that E30-6 can efficiently accelerate the hydrolysis of not only cocaine itself, but also all three toxic metabolites in vitro and in vivo. E30-6 is the most efficient enzyme for each of these toxic substrates (cocaine, cocaethylene, norcocaine, and norcocaethylene) among all the reported enzymes as far as we know at this point. These findings suggest that E30-6 is capable of efficiently treating cocaine toxicity even when alcohol and cocaine are used concurrently.


Asunto(s)
Cocaína , Cinética , Cocaína/química , Etanol
12.
Bioconjug Chem ; 33(7): 1340-1349, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35767675

RESUMEN

It is particularly challenging to develop a truly effective pharmacotherapy for cocaine use disorder (CUD) treatment. Accelerating cocaine metabolism via hydrolysis at cocaine benzoyl ester using an efficient cocaine hydrolase (CocH) is known as a promising pharmacotherapeutic approach to CUD treatment. Preclinical and clinical studies on our first CocH (CocH1), in its human serum albumin-fused form known as TV-1380, have demonstrated the promise of a general concept of CocH-based pharmacotherapy for CUD treatment. However, the biological half-life of TV-1380 (t1/2 = 8 h in rats, associated with t1/2 = 43-77 h in humans) is not long enough for practical treatment of cocaine dependence, which requires enzyme injection for no more than once weekly. Through protein fusion of a human butyrylcholinesterase mutant (denoted as CocH5) with a mutant (denoted as Fc(M6)) of Fc from human IgG1, we have designed, prepared, and tested a new fusion protein (denoted as CocH5-Fc(M6)) for its pharmacokinetic profile and in vivo catalytic activity against (-)-cocaine. CocH5-Fc(M6) represents the currently most efficient long-acting cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest elimination half-life (t1/2 = 229 ± 5 h) in rats. As a result, even at a single modest dose of 3 mg/kg, CocH5-Fc(M6) can significantly and effectively accelerate the metabolism of cocaine in rats for at least 60 days. In addition, ∼70 nM CocH5-Fc(M6) in plasma was able to completely block the toxicity and physiological effects induced by intraperitoneal injection of a lethal dose of cocaine (60 mg/kg).


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Butirilcolinesterasa/genética , Butirilcolinesterasa/farmacocinética , Hidrolasas de Éster Carboxílico/genética , Cocaína/metabolismo , Cocaína/uso terapéutico , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Humanos , Ratas , Proteínas Recombinantes
13.
Front Immunol ; 13: 852272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280995

RESUMEN

Inflammation is a defensive reaction for external stimuli to the human body and generally accompanied by immune responses, which is associated with multiple diseases such as atherosclerosis, type 2 diabetes, Alzheimer's disease, psoriasis, asthma, chronic lung diseases, inflammatory bowel disease, and multiple virus-associated diseases. Epigenetic mechanisms have been demonstrated to play a key role in the regulation of inflammation. Common epigenetic regulations are DNA methylation, histone modifications, and non-coding RNA expression; among these, histone modifications embrace various post-modifications including acetylation, methylation, phosphorylation, ubiquitination, and ADP ribosylation. This review focuses on the significant role of histone modifications in the progression of inflammatory diseases, providing the potential target for clinical therapy of inflammation-associated diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Histonas , Metilación de ADN , Histonas/metabolismo , Humanos , Inflamación/metabolismo , Procesamiento Proteico-Postraduccional
14.
Proteins ; 90(2): 485-492, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34546589

RESUMEN

Acetylcholinesterase (AChE) is the crucial enzyme in the central nervous system. It is the target of various organophosphorus nerve agents and pesticides, and the inhibition of AChE is a therapeutic strategy for the treatment of various neurological-related diseases. The Glu202 is a key residue adjacent to the catalytic His447 and plays important role in catalysis. Although the Glu202 has long been considered as negatively charged in many studies, more and more evidences support a protonated Glu202. However, Glu202 is freely accessible by solvent, and thus it seems more reasonable for Glu202 to majorly take the deprotonated state. In the present work, we carried out a series of molecular dynamics simulations with the Glu202 adopting different protonation states. Our results show that the protonated Glu202 is important in maintaining the key hydrogen bond network that supports the catalytic triad, whereas the deprotonated Glu202 results in the collapse of the key hydrogen bond network which consequently destabilizes the catalytic His447. We also notice that different protonation states of Glu202 merely alters the binding mode of ACh. However, since the catalytic His447 is disrupted if Glu202 is deprotonated, His447 cannot facilitate the nucleophilic attack performed by Ser203. Therefore, the catalytic efficiency of ACh hydrolysis should be remarkably decreased if Glu202 is deprotonated. Our findings suggest that, when designing and developing highly active AChE inhibitors or proposing mechanistic hypotheses for AChE-catalyzed reactions, the protonated state of Glu202 should be considered.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Dominio Catalítico , Enlace de Hidrógeno , Modelos Químicos
15.
Nat Prod Res ; 36(19): 5058-5063, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33949250

RESUMEN

Two new terragine analogs (1‒2) with special succinimide and aminopentane moieties were isolated from the fermentation broth of Bacillus sp. SH-1.2-ROOT-18, an endophyte previously discovered from the root of Dendrobium officinale. The structures were elucidated base on comprehensive 1 D/2D NMR and MS data analysis. Complete NMR assignments for the first reported naturally occurring metabolite 3 was also provided.[Formula: see text].


Asunto(s)
Bacillus , Dendrobium , Dendrobium/química , Endófitos/química , Fermentación , Succinimidas
16.
J Nanobiotechnology ; 19(1): 400, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856996

RESUMEN

BACKGROUND: The poor regenerative capability and structural complexity make the reconstruction of meniscus particularly challenging in clinic. 3D printing of polymer scaffolds holds the promise of precisely constructing complex tissue architecture, however the resultant scaffolds usually lack of sufficient bioactivity to effectively generate new tissue. RESULTS: Herein, 3D printing-based strategy via the cryo-printing technology was employed to fabricate customized polyurethane (PU) porous scaffolds that mimic native meniscus. In order to enhance scaffold bioactivity for human mesenchymal stem cells (hMSCs) culture, scaffold surface modification through the physical absorption of collagen I and fibronectin (FN) were investigated by cell live/dead staining and cell viability assays. The results indicated that coating with fibronectin outperformed coating with collagen I in promoting multiple-aspect stem cell functions, and fibronectin favors long-term culture required for chondrogenesis on scaffolds. In situ chondrogenic differentiation of hMSCs resulted in a time-dependent upregulation of SOX9 and extracellular matrix (ECM) assessed by qRT-PCR analysis, and enhanced deposition of collagen II and aggrecan confirmed by immunostaining and western blot analysis. Gene expression data also revealed 3D porous scaffolds coupled with surface functionalization greatly facilitated chondrogenesis of hMSCs. In addition, the subcutaneous implantation of 3D porous PU scaffolds on SD rats did not induce local inflammation and integrated well with surrounding tissues, suggesting good in vivo biocompatibility. CONCLUSIONS: Overall, this study presents an approach to fabricate biocompatible meniscus constructs that not only recapitulate the architecture and mechanical property of native meniscus, but also have desired bioactivity for hMSCs culture and cartilage regeneration. The generated 3D meniscus-mimicking scaffolds incorporated with hMSCs offer great promise in tissue engineering strategies for meniscus regeneration.


Asunto(s)
Condrogénesis/fisiología , Menisco/citología , Impresión Tridimensional , Regeneración/fisiología , Andamios del Tejido/química , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Condrocitos/citología , Humanos , Células Madre Mesenquimatosas/citología , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos
17.
J Nat Prod ; 84(9): 2568-2574, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34496568

RESUMEN

Twelve guaianolide-type sesquiterpene oligomers with diverse structures were isolated from the whole plants of Ainsliaea fragrans, including a novel trimer (1) and two new dimers (2, 3). The chemical structures of the new compounds were elucidated through spectroscopic data interpretation and computational calculations. Ainsfragolide (1) is an unusual guaianolide sesquiterpene trimer generated with a novel C-C linkage at C2'-C15″, which may be biosynthesized prospectively through a further Michael addition. Cytotoxicity results showed that ainsfragolide (1) was the most potent compound against five cancer cell lines with IC50 values in the range of 0.4-8.3 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Sesquiterpenos de Guayano/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , China , Humanos , Estructura Molecular , Sesquiterpenos de Guayano/aislamiento & purificación
18.
Angew Chem Int Ed Engl ; 60(40): 21959-21965, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34351032

RESUMEN

Benzoylecgonine (BZE) is the major toxic metabolite of cocaine and is responsible for the long-term cocaine-induced toxicity owing to its long residence time in humans. BZE is also the main contaminant following cocaine consumption. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo, a single dose of BZEase2 (1 mg kg-1 , IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme has the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was also determined.


Asunto(s)
Cocaína/análogos & derivados , Hidrolasas/química , Cocaína/química , Cocaína/metabolismo , Hidrolasas/metabolismo , Modelos Moleculares , Estructura Molecular
19.
Arch Biochem Biophys ; 709: 108986, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34252391

RESUMEN

Tubers of Curcuma wenyujin are rich in essential oils, mainly various sesquiterpenes, showing antibacterial, anti-viral and anti-tumor effects. However, the molecular mechanism of C. wenyujin is deficient and related sesquiterpene synthases are still unclear. In this study, the transcriptome data of tubers and leaves from C. wenyujin were obtained and assembled into 78 092 unigenes. Of them, 244 unigenes were predicted to be involved in terpenoid biosynthesis while 131 unigenes were categorized as the "Terpenoid backbone biosynthesis" (TBB) term. Twenty-two unigenes possessed terpene synthase domain; five were predicted to be sesquiterpene synthases. Of the 208 unigenes annotated as cytochromes P450, 8 unigenes with full-length coding sequences were part of the CYP71 clade that primarily may perform hydroxylations of specialized metabolites. Furthermore, Ten DEGs related to the C5 precursor supply and sesquiterpene synthesis were validated by Real-time PCR; that showed a close correspondence with transcriptome sequence. A novel germacrene B synthase (CwGBS) and α-santalene synthase (CwSS) were identified in metabolically engineering E. coli. This study provided the first de novo transcriptome comparative analysis of leaf and tuber tissues from C. wenyujin, aiming to understand genetic mechanisms. Key genes involved in the biosynthesis of sesquiterpene will help for revealing the underlying mechanisms of C. wenyujin.


Asunto(s)
Transferasas Alquil y Aril/genética , Curcuma/genética , Genes de Plantas , Proteínas de Plantas/genética , Transcriptoma , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Curcuma/química , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Bases de Datos Genéticas , Escherichia coli/genética , Perfilación de la Expresión Génica , Ontología de Genes , Hojas de la Planta/genética , Proteínas de Plantas/química , Tubérculos de la Planta/genética , RNA-Seq
20.
Ann Palliat Med ; 10(6): 6936-6947, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34118862

RESUMEN

Cocaine abuse is a serious global public health and social problem, and cocaine detoxification remains a challenge. Benzoylecgonine (BE) is the main toxic metabolite after cocaine consumption, with a longer retention time in the body and environment than cocaine itself. According to many studies, the toxicity of BE to humans is as significant as cocaine itself. Moreover, BE is recognized as an addictive drug contaminant in the environment, especially the freshwater system, leading to worries of its ecotoxicity. Extensive studies on the adverse effects of BE on both humans and ecology have been conducted, showing a marked sub-lethal toxicity of BE to diverse organisms. To eliminate BE in vivo and in vitro, various elimination methods have been developed and their BE removal capacity were evaluated. In this review, we aimed to summarize information in the literature to understand better BE toxicity and elimination that may facilitate the clinical treatment of cocaine abuse. By studying the critical role of BE in cocaine abuse, we propose that the ideal treatment for cocaine abuse should not only detoxify cocaine itself but also remove or degrade BE. Emphasizing the necessity of developing effective BE elimination methods is significant for the development of potential clinical treatments and environmental protections.


Asunto(s)
Cocaína , Cocaína/análogos & derivados , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...