Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266180

RESUMEN

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

2.
Sci Adv ; 9(40): eadg9376, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792938

RESUMEN

Neuromorphic computing has shown remarkable capabilities in silicon-based artificial intelligence, which can be optimized by using Mott materials for functional synaptic connections. However, the research efforts focus on two-terminal artificial synapses and envisioned the networks controlled by silicon-based circuits, which is difficult to develop and integrate. Here, we propose a dynamic network with laser-controlled conducting filaments based on electric field-induced local insulator-metal transition of vanadium dioxide. Quantum sensing is used to realize conductivity-sensitive imaging of conducting filament. We find that the location of filament formation is manipulated by focused laser, which is applicable to simulate the dynamical synaptic connections between the neurons. The ability to process signals with both long-term and short-term potentiation is further demonstrated with ~60 times on/off ratio while switching the pathways. This study opens the door to the development of dynamic network structures depending on easily controlled conduction pathways, mimicking the biological nervous systems.

3.
J Integr Med ; 21(5): 496-508, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517892

RESUMEN

OBJECTIVE: This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats. METHODS: The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA. RESULTS: APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05). CONCLUSION: EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.


Asunto(s)
Electroacupuntura , Enfermedades Neuroinflamatorias , Ratas , Animales , Ratas Sprague-Dawley , Dolor Postoperatorio , Interferones
5.
Nat Commun ; 14(1): 1288, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894541

RESUMEN

The accurate radio frequency (RF) ranging and localizing of objects has benefited the researches including autonomous driving, the Internet of Things, and manufacturing. Quantum receivers have been proposed to detect the radio signal with ability that can outperform conventional measurement. As one of the most promising candidates, solid spin shows superior robustness, high spatial resolution and miniaturization. However, challenges arise from the moderate response to a high frequency RF signal. Here, by exploiting the coherent interaction between quantum sensor and RF field, we demonstrate quantum enhanced radio detection and ranging. The RF magnetic sensitivity is improved by three orders to 21 [Formula: see text], based on nanoscale quantum sensing and RF focusing. Further enhancing the response of spins to the target's position through multi-photon excitation, a ranging accuracy of 16 µm is realized with a GHz RF signal. The results pave the way for exploring quantum enhanced radar and communications with solid spins.

6.
Nat Commun ; 13(1): 5713, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175507

RESUMEN

Hexagonal boron nitride (hBN) has recently been demonstrated to contain optically polarized and detected electron spins that can be utilized for implementing qubits and quantum sensors in nanolayered-devices. Understanding the coherent dynamics of microwave driven spins in hBN is of crucial importance for advancing these emerging new technologies. Here, we demonstrate and study the Rabi oscillation and related phenomena of a negatively charged boron vacancy (V[Formula: see text]) spin ensemble in hBN. We report on different dynamics of the V[Formula: see text] spins at weak and strong magnetic fields. In the former case the defect behaves like a single electron spin system, while in the latter case it behaves like a multi-spin system exhibiting multiple-frequency dynamical oscillation as beat in the Ramsey fringes. We also carry out theoretical simulations for the spin dynamics of V[Formula: see text] and reveal that the nuclear spins can be driven via the strong electron nuclear coupling existing in V[Formula: see text] center, which can be modulated by the magnetic field and microwave field.

7.
Ear Nose Throat J ; 101(2_suppl): 37S-42S, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33474979

RESUMEN

OBJECTIVES: The aim of the research is to create an experimental data set of coronal section images of a human head. METHODS: The head of a 49-year-old male cadaver was scanned by computed tomography (CT), then perfused with a green filling material via the bilateral common carotid artery, before being frozen and embedded. The head was sectioned along the coronal plane by a computer-controlled 5520 engraving and milling machine, capable of either 0.03-mm or 0.06-mm interspacing. All images were captured with a Canon 5D-Mk III digital camera. RESULTS: A total of 3854 section images were obtained, each with a resolution of 5760 × 3840 pixels. The number of section images at 0.03- and 0.06-mm interspacing were 1437 and 2417, respectively. All the images were stored in JPG and RAW formats. The image size of each RAW format was about 24.5 MB, whereas for JPG format, the equivalent size was about 5.9 MB. All the RAW and JPG images together occupied 117.35 GB of disk space. CONCLUSIONS: The interspacing of this data set section was thinner than those of any comparable studies, and the image resolution was higher, too. This data set was also the first to take coronal sections of the human head. The data set contains image information from the smallest structures within the human head and can satisfy the needs of future developments and applications, such as the virtual operation training systems for otolaryngology, ophthalmology, stomatology, and neurosurgery, and help develop medical teaching software and maps.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Cadáver , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Persona de Mediana Edad , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos
8.
Opt Lett ; 47(1): 66-69, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951884

RESUMEN

The development of super-resolution imaging has driven research into biological labeling, new materials' characterization, and nanoscale sensing. Here, we studied the photoinduced charge state conversion of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), which show the potential for multifunction sensing and labeling at the nanoscale. Charge state depletion (CSD) nanoscopy is subsequently demonstrated for the diffraction-unlimited imaging of NDs in biological cells. A resolution of 77 nm is obtained with 50 nm NDs. The depletion laser power of CSD nanoscopy is approximately 1/16 of stimulated emission depletion (STED) microscopy with the same resolution. The results can be used to improve the spatial resolution of biological labeling and sensing with NDs and other nanoparticles.


Asunto(s)
Nanodiamantes , Rayos Láser , Luz , Microscopía , Nitrógeno
9.
Nat Commun ; 12(1): 6389, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737279

RESUMEN

Focusing electromagnetic field to enhance the interaction with matter has been promoting researches and applications of nano electronics and photonics. Usually, the evanescent-wave coupling is adopted in various nano structures and materials to confine the electromagnetic field into a subwavelength space. Here, based on the direct coupling with confined electron oscillations in a nanowire, we demonstrate a tight localization of microwave field down to 10-6λ. A hybrid nanowire-bowtie antenna is further designed to focus the free-space microwave to this deep-subwavelength space. Detected by the nitrogen vacancy center in diamond, the field intensity and microwave-spin interaction strength are enhanced by 2.0 × 108 and 1.4 × 104 times, respectively. Such a high concentration of microwave field will further promote integrated quantum information processing, sensing and microwave photonics in a nanoscale system.

10.
Pharmgenomics Pers Med ; 14: 1403-1413, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34785928

RESUMEN

OBJECTIVE: Gene polymorphism is closely related to tumor development, therapeutic response and prognosis. The relationship between regenerating gene 1A (Reg1A) polymorphism and nasopharyngeal carcinoma (NPC) is unclear. This retrospective study aimed to analyze the association between Reg1a polymorphisms and metastasis, radiation sensitivity and survivals in patients with NPC. METHODS: A total of 308 patients who had received radiotherapy at the Affiliated Xinhua Hospital, Hainan Medical College, between January 2010 and December 2018 with NPC, were enrolled for assessment of Reg1a polymorphisms through direct DNA sequencing. RESULTS: In the polymorphism of gene REG1A, patients with rs10165462 20CC genotype had later T stages (OR = 4.051, 95% CI: 1.775-9.244, P = 0.001), whereas carriers with rs12072 2922CC genotype had earlier T stages (OR = 1.891, 95% CI: 1.018-3.514, P = 0.044) after adjustments for age and gender, respectively. Among rs10165462 20 C/T polymorphism, 20TT wild-type was associated with better radiation response (P = 0.0019), and multivariate analysis showed that it was the only genotype of polymorphism that was significantly associated with better radiation response (OR = 0.265, 95% CI: 0.096-0.727, P = 0.01). Patients with the 20TT wild-type had a better five-year overall survival (60.9%) rate and five-year progression-free survival (60.8%) than those with the 20CC genotype (41.8% and 39.4%, P = 0.01 and P = 0.004, respectively). Patients with variant alleles (CC + CT) had significantly poorer OS (45.2%) and PFS (41.8%) compared with wild-type (TT) carriers (60.9% and 60.8%; P = 0.037 and P = 0.015, respectively). As for rs12072, patients with variant alleles (TT + TC) had significantly adverse OS and PFS compared with wild-type (CC) carriers (62.5% vs 44.8% and 62.5% vs 42.9%; P = 0.024 and P = 0.027, respectively). Cox regression showed that rs10165462 20CT was the only prognostic factor for OS (HR = 1.642, 95% CI 1.038-2.598, P = 0.034) and PFS (HR = 1.705, 95% CI 1.080-2.692, P = 0.022). CONCLUSION: Reg1a polymorphisms may be a predictor of radiation response, local invasion, OS and PFS in patients with NPC who undergo radiotherapy treatment.

11.
Rev Sci Instrum ; 92(4): 044904, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243481

RESUMEN

The nitrogen-vacancy center in diamond has been broadly applied in quantum sensing since it is sensitive to different physical quantities. Meanwhile, it is difficult to isolate disturbances from unwanted physical quantities in practical applications. Here, we present a fiber-based quantum thermometer by tracking the sharp-dip in the zero-field optically detected magnetic resonance spectrum in a high-density nitrogen-vacancy ensemble. Such a scheme can not only significantly isolate the magnetic field and microwave power drift but also improve the temperature sensitivity. Thanks to its simplicity and compatibility in implementation and robustness, this quantum thermometer is then applied to the surface temperature imaging of an electronic chip with a sensitivity of 18mK/Hz. It thus paves the way to high sensitive temperature measurements in ambiguous environments.

12.
Appl Opt ; 59(21): 6291-6295, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32749291

RESUMEN

The nitrogen vacancy (NV) center in diamond is studied widely for magnetic field and temperature sensing at the nanoscale. Usually, the fluorescence is recorded to estimate the spin state of the NV center. Here we applied a time-gating technique to improve the contrast of the spin-dependent fluorescence. A NIR pulsed laser pumped the stimulated emission of the NV center and depleted the spontaneous emission that was excited by a green laser. We changed the relative delay between the NIR laser and the green laser. Then the spontaneous emission of the NV center in varied time windows was extracted by comparing the fluorescence intensities with and without the NIR laser. The results showed that the spin-dependent fluorescence contrast could be improved by approximately 1.8 times by applying the time gating. The background of the environment was eliminated due to temporal filtering. This work demonstrates that the stimulated emission assisted time-gating technique can be used to improve the performance of an NV center sensor in a noisy environment.

13.
Zhongguo Zhong Yao Za Zhi ; 45(14): 3459-3466, 2020 Jul.
Artículo en Chino | MEDLINE | ID: mdl-32726062

RESUMEN

The present study was performed to establish the UPLC fingerprints of Bolbostemmatis Rhizoma and determine the contents of three saponins by quantitative analysis of multi-components by single marker(QAMS), and provide basis for quality evaluation of Bolbostemmatis Rhizoma. The analysis was carried out on an analytical column of Waters Cortecs T3(2.1 mm×100 mm,1.6 µm)with gradient elution by acetonitrile-0.1% phosphoric acid solution, at a flow rate of 0.3 mL·min~(-1). The detection wavelength was 203 nm, the column temperature was 30 ℃ and the injection volume was 1 µL. The UPLC fingerprints of Bolbostemmatis Rhizoma were established and evaluated by similarity calculation, cluster analysis and principal component analysis. The relative calibration factors of toberoside B and toberoside C were determined with toberoside A as internal reference. The content was calculated by relative calibration factors to develop a method of QAMS. Comparing the results of QAMS with those of ESM, the accuracy and feasibility of one-eva-luation and multi-evaluation can be determined. RESULTS:: showed that the fingerprints of 19 batches of Bolbostemmatis Rhizoma have four common peaks with similarities ranging from 0.754 to 1.000. Cluster analysis and principal component analysis classified 19 batches of Bolbostemmatis Rhizoma into three categories, which was consistent with the similarity evaluation results. The relative deviation between the content of tubeicosides B and C in 19 batches of Bolbostemmatis Rhizoma determined by QAMS and ESM is less than 5.0%, indicating that there was no significant difference between the two methods. Therefore, the UPLC fingerprints combined with QAMS and similarity evaluation can be effectively used to evaluate the quality of Bolbostemmatis Rhizoma.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión , Análisis de Componente Principal , Control de Calidad , Rizoma
14.
Phys Rev Lett ; 124(22): 223603, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567927

RESUMEN

Light has shown an incredible capability in precision measurement based on optomechanic interaction in high vacuum by isolating environment noises. However, there are still obstructions, such as displacement and mass estimation error, highly hampering the improvement of absolute accuracy at the nanoscale. Here, we present a nonlinearity based metrology to precisely measure the position and mass of a nanoparticle with optical levitation under 10^{-5} mbar. By precisely controlling the oscillation amplitude of the levitated nanoparticle at the nonlinear regime for high accuracy calibration, we realized a feasible sub-picometer-level position measurement with an uncertainty of 1.0% without the prior information of mass, which can be further applied to weigh the femtogram-level mass with an uncertainty of 2.2%. It will also pave the way to construct a fine-calibrated optomechanic platform in high vacuum for high sensitivity and accuracy measurement in force and acceleration at the nanoscale and the study in quantum superposition at the mesoscopic scale.

15.
Opt Lett ; 45(3): 730-733, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004296

RESUMEN

Two-photon charge state conversion has been utilized to improve the spatial resolution of the sensing and imaging with the nitrogen vacancy (NV) center in diamonds. Here, we studied the charge state conversion of the NV center under picosecond pulsed laser excitation. With the same average power, the charge state conversion rate can be improved approximately 24 times by reducing the repetition rate of the laser pulse from 80 to 1 MHz. Subsequently, a pulsed laser with a low repetition rate was applied for the super-resolution charge state depletion microscopy of the NV center. The average power of the depletion laser was reduced approximately 5 times. It can decrease the optical heating, which affects the accuracy and sensitivity of sensing. With the assistance of an additional near-infrared laser, a resolution of 12 nm was obtained with 1 mW depletion laser power. Combined with spin manipulation, we expect our results can be used for the development of a diffraction-unlimited NV center sensing.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 50(1): 20-26, 2019 Jan.
Artículo en Chino | MEDLINE | ID: mdl-31037900

RESUMEN

OBJECTIVE: To investigate the analgesic mechanism of xylazine by inhibiting the activation of hyperpolarized cyclic nucleotide-gated (HCN) ion channels. METHODS: HCN subchannel 1 (HCN1) knockout mice (HCN1-/-) and HCN1 wild type mice (HCN1+/+) were intraperitoneally injected with physiological saline and xylazine (10, 20, 30, and 40 mg/kg). Mechanical pain test and tail flick test were used to test the analgesic effect of xylazine by using the percentage of the maximal possible effect (%MPE); The control group and test groups of different concentrations of xylazine (12.5, 25, 50, and 100 µmol/L) were set up using HEK 293 cells transfected HCN1 plasmid and HCN subchannel 2 (HCN2) plasmid, respectively. The activated current of hyperpolarized HEK 293 cells expressing HCN1 and HCN2 ion channels and the inhibition rate of xylazine on hyperpolarization-activated currents were recorded using a whole cell patch clamp. RESULTS: The results demonstrated that %MPE of the mechanical pain stimuli test and the thermal radiation stimuli test increased with the higher concentration of xylazine injected for both HCN1+/+ mice and HCN1-/-mice. When injecting xylazine by 30 mg/kg and 40 mg/kg, the %MPE of mechanical pain stimuli test for HCN1-/- mice were %MPE= (62.06±14.72) % and %MPE= (69.92±16.09) %, respectively; and the percentages of tail flick tests were (52.50±1.97) % and %MPE= (64.74±6.34) %, respectively. But for HCN1+/+ mice, the percentages of mechanical pain stimuli test were %MPE= (75.47±8.06) % and %MPE= (86.35±11.31) %; respectively, and the percentage of tail flick tests were %MPE= (57.83±4.82) % and (74.98±9.35) %. The analgesic effect results of the mechanical pain test and tail flick test of HCN1+/+ mice were significantly different from HCN1-/- mice ( P<0.05). Whole-cell patch clamp test results showed that xylazine had inhibitory effects on the currents of HCN1 and HCN2 ion channels, and the hyperpolarization-activated currents inhibition rate of HCN1 by xylazine (12.5-100 µmol/L) was between (24.62±23.62) %- (62.40±15.48) %; V1/2 of HCN1 was between (-79.58±1.56) mV- (-98.95±3.57) mV. The Ih inhibition rate of HCN2 by xylazine (12.5-100 µmol/L) was between (29.19±17.82) %- (80.02±6.64) %; with V1/2 of HCN2 between (-102.17±1.36) mV- (-117.48±2.38) mV. CONCLUSION: Xylazine showed better analgesic effect on HCN1+/+ mice than HCN1-/- mice. Xylazine can produce analgesic effect by inhibiting HCN ion channel currents.


Asunto(s)
Xilazina/farmacología , Animales , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones , Nucleótidos Cíclicos
17.
J Pharm Biomed Anal ; 169: 1-10, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30826486

RESUMEN

There is an increasing focus on the quality consistency evaluation of dispensing granule in traditional Chinese medicines (TCMs). According to the guideline from Chinese Pharmacopoeia Commission, the substantial equivalence of dispensing granule and traditional decoction should be determined, and the chromatographic fingerprint has been recommended as a comprehensive qualitative approach to assess the quality consistency between dispensing granule and traditional decoction. However, a high-degree chemical similarity does not equal a bioequivalence. Attempting to realize the quality evaluation by integrating chemical consistency and bioequivalence, we herein proposed a totality-of-the-evidence approach based on clustering analysis and equivalence evaluation taking the dispensing granule and traditional decoction of Scutellariae Radix (SR) as a typical case. Chemical fingerprints were developed by high performance liquid chromatography coupled with photodiode array detector and quadrupole time-of-flight mass spectrometry (HPLC-PDA/QTOF-MS). Subsequently, a feature selection strategy, integrated linear and nonlinear correlation analysis, was carried out to assess the correlation between chemical profiles and biological activities. Finally, quality consistency between the dispensing granule and the traditional decoction was determined by bioactive marker-guided hierarchical clustering analysis (HCA), k-means clustering method and bioequivalence evaluation. The available evidence suggested that not all the dispensing granule of SR were sufficiently similar to the traditional decoction. This study provides an applicable methodology for quality consistency evaluation of dispensing granule and traditional decoction in TCMs.


Asunto(s)
Medicamentos Herbarios Chinos/química , Scutellaria baicalensis/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Medicina Tradicional China/métodos , Proyectos Piloto , Equivalencia Terapéutica
18.
Zhongguo Zhong Yao Za Zhi ; 44(24): 5352-5357, 2019 Dec.
Artículo en Chino | MEDLINE | ID: mdl-32237379

RESUMEN

In order to improve the quality and yield of Gastrodia elata f. glauca,determine the suitable Armillaria strains for the accompanying experiment in Xiaocaoba,Yiliang,four Armillaria strains were selected. They were used for G. elata cultivation,and the gene sequence,r DNA-ITS,ß-tubulin and EF1-α of four Armillaria strains,were compared and analyzed. The yield was mesured in November which was based on previous laboratory research. The tubers were washed and steamed,then dried and powdered. The content of gastrodin and p-hydroxybenzyl alcohol was determined by UPLC,the polysaccharide was determined by phenol-concentrated sulfuric acid method. The results showed that the strains M1,M2,M3 and M4 were Armillaria gallica group but there were differences in the yield and active ingredient content when they were cultivated with the same G. elata. The yield of G. elata( Jian Ma) was the lowest when cultivated with Armillaria strain M3,but it was not the same when used M1,0. 981 kg·m-2,the highest yield in the four stains.The content of gastrodin was 0. 581%,the total content of gastrodin and p-hydroxybenzyl alcohol was 0. 595%,when accompanied with M1 strains. It was higher than other strains. The content of G. elata polysaccharide was 2. 132%,which was similar to the content of M3 strain,higher than that of M2 and M4 strain. Selecting phylogenesis of Armillaria strians,the content of active ingredient,and the yield as indicators,it was concluded concerned that the M1 strain was the best of four strains. The results will provide a theoretical basis and guidance for higher yield and quality in cultivation of G. elata in Yiliang.


Asunto(s)
Armillaria/fisiología , Gastrodia/química , Gastrodia/microbiología , Tubérculos de la Planta/química , Armillaria/clasificación , Filogenia , Plantas Medicinales/química , Plantas Medicinales/microbiología
19.
Vis Comput Ind Biomed Art ; 2(1): 6, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32240415

RESUMEN

This paper presents a novel augmented reality (AR)-based neurosurgical training simulator which provides a very natural way for surgeons to learn neurosurgical skills. Surgical simulation with bimanual haptic interaction is integrated in this work to provide a simulated environment for users to achieve holographic guidance for pre-operative training. To achieve the AR guidance, the simulator should precisely overlay the 3D anatomical information of the hidden target organs in the patients in real surgery. In this regard, the patient-specific anatomy structures are reconstructed from segmented brain magnetic resonance imaging. We propose a registration method for precise mapping of the virtual and real information. In addition, the simulator provides bimanual haptic interaction in a holographic environment to mimic real brain tumor resection. In this study, we conduct AR-based guidance validation and a user study on the developed simulator, which demonstrate the high accuracy of our AR-based neurosurgery simulator, as well as the AR guidance mode's potential to improve neurosurgery by simplifying the operation, reducing the difficulty of the operation, shortening the operation time, and increasing the precision of the operation.

20.
Opt Lett ; 43(22): 5587-5590, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30439901

RESUMEN

Precise detection of surface plasmons is crucial for the research of nanophotonics and quantum optics. In this Letter, we used a single nitrogen vacancy center in diamond as a probe to detect the surface plasmon that was tuned by the thickness of a metallic film. The fluorescence intensity and lifetime of the nitrogen vacancy (NV) center were measured to obtain the information of local light-matter interaction. A nonlinear thickness dependent change of the surface plasmon was observed, with the maximum at the thickness of approximately 30 nm. With optimized thickness of silver film, the fluorescence intensity of a single NV center was enhanced 2.6 times, and the lifetime was reduced by a factor of 3, without affecting the coherence time of the NV spin state. The results proved that this system can quantitatively detect the light-matter interaction at nanoscale, and it provides an approach to enhance the fluorescence intensity of a quantum emitter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...