RESUMEN
Background: Renal inflammation plays key roles in the pathogenesis of diabetic kidney disease (DKD). Immune cell infiltration is the main pathological feature in the progression of DKD. Sodium glucose cotransporter 2 inhibitor (SGLT2i) were reported to have antiinflammatory effects on DKD. While the heterogeneity and molecular basis of the pathogenesis and treatment with SGLT2i in DKD remains poorly understood. Methods: To address this question, we performed a single-cell transcriptomics data analysis and cell cross-talk analysis based on the database (GSE181382). The single-cell transcriptome analysis findings were validated using multiplex immunostaining. Results: A total of 58760 cells are categorized into 25 distinct cell types. A subset of macrophages with anti-inflammatory potential was identified. We found that Ccl3+ (S100a8/a9 high) macrophages with anti-inflammatory and antimicrobial in the pathogenesis of DKD decreased and reversed the dapagliflozin treatment. Besides, dapagliflozin treatment enhanced the accumulation of Pck1+ macrophage, characterized by gluconeogenesis signaling pathway. Cell-cross talk analysis showed the GRN/SORT1 pair and CD74 related signaling pathways were enriched in the interactions between tubular epithelial cells and immune cells. Conclusions: Our study depicts the heterogeneity of macrophages and clarifies a new possible explanation of dapagliflozin treatment, showing the metabolism shifts toward gluconeogenesis in macrophages, fueling the anti-inflammatory function of M2 macrophages, highlighting the new molecular features and signaling pathways and potential therapeutic targets, which has provided an important reference for the study of immune-related mechanisms in the progression of the disease.
RESUMEN
The clinicopathological features of HIV-related primary central nervous system lymphoma (PCNSL) and immunocompetent primary central nervous system lymphoma (IC-PCNSL) were found to be distinct. Thirty-seven patients with HIV-related PCNSL and thirty patients with IC-PCNSL were included in our study. Hematoxylin & eosin (HE) staining, immunohistochemical detection using CD10, MUM1, CD20, Bcl-2, Bcl-6, p53, C-MYC, Ki67, methyltransferase like factor 3 (METTL3) antibodies and Epstein-Barr encoding region (EBER) in situ hybridization were performed. All of the patients were classified as the diffuse large B-cell lymphoma (DLBCL) histological type. Patients with HIV-related PCNSL were younger and more likely to be male, with elevated lactate dehydrogenase (LDH) and low sugar content in cerebrospinal fluid (CSF) compared to patients with IC-PCNSL.The positive rates of METTL3, Bcl-2, p53 and EBER were significantly higher in HIV-related PCNSL patients than in IC-PCNSL patients. Furthermore, we also found that the expression of METTL3 was lower in germinal centre B-cell (GCB)-like DLBCL (n = 7) than in non-GCB like DLBCL (n = 30) in HIV-related PCNSL (P = 0.030); however, in IC-PCNSL patients, the expression of METTL3 was not significantly different between GCB-like DLBCL and non-GCB-like DLBCL (P = 0.670). Although the manifestations are similar in PCNSL patients with and without HIV, HIV-related PCNSL differs from IC-PCNSL in terms of pathological characteristics including METTL3, Bcl-2, p53 and EBER. We therefore suggest that the pathogenesis of HIV-related PCNSL and IC-PCNSL may differ according to host immune status.
RESUMEN
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
RESUMEN
Background: Existing studies investigating the impact of serum calcium (Ca), phosphate (P), 25 hydroxyvitamin D (25[OH]D), and parathyroid hormone (PTH) levels on kidney function have produced inconsistent results. Further research is needed to establish the direct causal relationship between these factors and kidney function. Methods: The study used genome-wide association study datasets for exposure and outcome, mainly derived from the UK Biobank and CKDGen Consortium, with sample sizes ranging from 3,310 to 480,699 individuals of European ancestry. Heritability and genetic correlations among these phenotypes were assessed using linkage disequilibrium score regression (LDSC) and phenotypes with a heritability z-score <4 were excluded from further analyses. Pleiotropic analyses were performed to identify potential horizontal pleiotropic variants at gene and LD-independent locus levels. Mendelian randomization (MR) analysis, using instrumental variables (IVs) based on two distinct selection criteria, was conducted to investigate the potential causal relationships between serum Ca, P, 25(OH)D, PTH, and kidney function. Results: PTH was excluded from further analysis due to a heritability z-score < 4. Genetic correlations were observed between serum Ca and urine albumin-to-creatinine ratio (UACR) (rg = 0.202, P-value = 5.0E-04), between serum 25(OH)D and estimated glomerular filtration rate using serum creatinine (eGFRcrea) (rg = -0.094; P-value = 1.4E-05), and between serum 25(OH)D and blood urea nitrogen (BUN) (rg = 0.127; P-value = 1.7E-06). In univariable MR analysis using IVs based on two different selection criteria, it consistently demonstrated that genetically predicted serum Ca consistently showed an increase in UACR (beta 0.11, P-value 2.0E-03; beta 0.13, P-value 2.0E-04). Similarly, serum P was associated with a decrease in eGFRcrea (beta -0.01, P-value 2.0E-04; beta -0.005, P-value 2.0E-03) and an increase in BUN (beta 0.02, P-value 3.0E-03; beta 0.02, P-value 7.5E-07). The influence of serum P on kidney function was further supported in multivariable MR analysis. However, genetically predicted 25(OH)D did not have a significant impact on kidney function. Conclusions: Elevated serum Ca or P levels could both impair kidney function, whereas 25(OH)D has no impact on renal function.
Asunto(s)
Calcio , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Fosfatos , Vitamina D , Humanos , Vitamina D/sangre , Vitamina D/análogos & derivados , Calcio/sangre , Fosfatos/sangre , Femenino , Masculino , Riñón/fisiología , Riñón/metabolismo , Tasa de Filtración Glomerular , Pleiotropía Genética , Hormona Paratiroidea/sangre , Polimorfismo de Nucleótido Simple , Persona de Mediana EdadRESUMEN
BACKGROUND: We investigated the associations between IgM, IgG, IgA, and IgE levels and all-cause mortality risk in Chinese centenarians. METHODS: All participants were from the China Hainan Centenarian Cohort Study. Eligible participants were divided into quartiles based on their IgM, IgG, IgA, and IgE levels. We used restricted cubic spline analyses, Cox regression analyses, and Kaplan-Meier survival curves to analyze associations between IgM, IgG, IgA, and IgE and all-cause mortality risk. RESULTS: A total of 906 centenarian participants were included in this study (81.2% female; median age, 102 years). During a median follow-up of 30.1 months, 838 (92.5%) participants died. Restricted cubic spline analysis revealed a nonlinear relationship ("L" type) between serum IgM level and all-cause mortality. Compared with the higher three quartiles of serum IgM level, the lowest quartile was associated with a higher risk of death (Q1 versus Q2-Q4: HR, 1.365; 95% CI, 1.166-1.598; P < 0.001). Among individuals for whom IgM < 0.708 g/L (Q1), the risk of all-cause mortality was 36.5% higher. Kaplan-Meier analyses showed that centenarians with lower serum IgM levels had significantly shorter median survival time (Q1 versus Q2-Q4: 26 months versus 32 months, log-rank P = 0.001). CONCLUSION: Serum IgM levels in centenarians significantly correlated with the risk of death, suggesting that they are suitable for predicting the overall risk of death in centenarians and can be used as an independent predictor of death.
RESUMEN
Introduction: The impact of coronavirus disease 2019 (COVID-19) on diabetic kidney disease (DKD) patients in China is not fully understood. This study aimed to investigate infection status in a DKD cohort post-renal biopsy and analyze vaccination and infection rates, as well as symptom severity, across various renal pathologies in DKD patients. Methods: This epidemiological survey, centered on COVID-19, employed a Chinese DKD and renal puncture follow-up cohort. A customized questionnaire enabled standardized data gathering. It collected data on clinical characteristics, vaccination and infection statuses, and diverse pathological types. The study analyzed the relationship between vaccination and infection statuses across various pathological types, evaluating characteristics and treatment outcomes in patients with infections. Results: In total, 437 patients with DKD from 26 Chinese provinces were followed up for a median of 44.6 ± 20 months. COVID-19 infection, vaccination, and novel coronavirus pneumonia (NCP) rates were 73.68%, 59.3%, and 6.63%, respectively. Ten patients with NCP had severe pneumonia or died of COVID-19. Renal pathology revealed that 167 (38.22%) patients had diabetic nephropathy (DN), 171 (39.13%) had non-diabetic renal disease (NDRD), and 99 had DN and NDRD (22.65%). The DN group had the lowest vaccination (54.5%), highest all-cause mortality (3.6%), and highest endpoint rates (34.10%). Compared to patients who were not vaccinated pre-infection (117 cases), vaccinated patients (198 cases) had reduced NCP (6.6% vs. 13.7%), severity (1.0% vs. 3.4%), and endpoint (9.10% vs. 31.60%) rates. Conclusion: Vaccination can prevent infection and diminish COVID-19 severity in patients with DKD; therefore, increasing vaccination rates is particularly important. Clinical Trial registration: ClinicalTrails.gov, NCT05888909.
Asunto(s)
COVID-19 , Nefropatías Diabéticas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , China/epidemiología , Estudios de Cohortes , COVID-19/epidemiología , COVID-19/complicaciones , Vacunas contra la COVID-19/administración & dosificación , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/complicaciones , Estudios de Seguimiento , Riñón/patología , Riñón/virología , Vacunación/estadística & datos numéricosRESUMEN
Background & Aims: The expression of HBsAg from integrated HBV DNA limits the achievement of functional cure for chronic hepatitis B. Thus, characterising the unique expression and secretion of HBsAg derived from integrated HBV DNA is of clinical significance. Methods: A total of 563 treatment-naive patients and 62 functionally cured patients were enrolled, and HBsAg and HBcAg immunohistochemistry of their liver biopsy tissues was conducted followed by semi-quantitative analysis. Then, based on stratified analysis of HBeAg-positive and -negative patients, long-read RNA sequencing analysis, as well as an in vitro HBV integration model, we explored the HBsAg secretion characteristics of integrated HBV DNA and underlying mechanisms. Results: In contrast to the significantly lower serum HBsAg levels, no significant decrease of intrahepatic HBsAg protein was observed in HBeAg-negative patients, as compared with HBeAg-positive patients. The results of long-read RNA sequencing of liver tissues from patients with chronic HBV infection and in vitro studies using integrated HBV DNA mimicking dslDNA plasmid revealed that, the lower HBsAg secretion efficiency seen in HBeAg-negative patients might be attributed to an increased proportion of preS1 mRNA derived from integrated HBV DNA instead of covalently closed circular DNA. The latter resulted in an increased L-HBsAg proportion and impaired HBsAg secretion. Enhancer 1 (EnhI) in integrated HBV DNA could retarget preS1 (SP1) and preS2 (SP2) promoters to disrupt their transcriptional activity balance. Conclusions: The secretion of HBsAg originating from integrated HBV DNA was impaired. Mechanistically, functional deficiency of core promoter leads to retargeting of EnhI and thus uneven activation of the SP1 over the SP2 promoter, resulting in an increase in the proportion of L-HBsAg. Impact and implications: Integrated hepatitis B virus (HBV) DNA can serve as an important reservoir for HBV surface antigen (HBsAg) expression, and this limits the achievement of a functional cure. This study revealed that secretion efficiency is lower for HBsAg derived from integrated HBV DNA than HBsAg derived from covalently closed circular DNA, as determined by the unique sequence features of integrated HBV DNA. This study can broaden our understanding of the role of HBV integration and shed new light on antiviral strategies to facilitate a functional cure. We believe our results are of great general interest to a broad audience, including patients and patient organisations, the medical community, academia, the life science industry and the public.
RESUMEN
INTRODUCTION: Renal interstitial fibrosis is an important pathological basis for kidney ageing and the progression of ageing nephropathy. In the present research, we established an aged mouse model of faecal microbiota transplantation (FMT), identified the rejuvenation features of the kidney in aged male mice, and preliminarily analysed the possible mechanism by which the rejuvenation of the intestinal microbiota reduces renal interstitial fibrosis and delays senescence in aged male mice. METHODS: We established an aged male mice model that was treated with FMT (FMT-Old) and a normal aged male mice control group (Old). Differentially expressed cytokines were identified using a cytokine array, and changes in protein expression related to signal transduction pathways in renal tissues were detected using a signalling pathway array. Senescence-associated ß-galactosidase and Masson staining were performed to observe the degrees of renal senescence and tubule interstitial fibrosis. Immunohistochemistry was utilized to detect changes in the expression of the ageing markers p53 and p21 and the inflammation-related protein nuclear factor (NF-κB) subunit (RelA/p65). RESULTS: The pathological features of renal senescence in the FMT-Old group were significantly alleviated, and the levels of the ageing indicators p53 and p21 were decreased (p < 0.05). Ingenuity Pathway Analysis revealed that six differentially expressed cytokines, MIP-3ß (CCL-19), E-selectin (SELE), Fas ligand (Fas L/FASLG), CXCL-11 (I-TAC), CXCL-1 and CCL-3 (MIP-1α) were related to a common upstream regulatory protein, RelA/p65, and the expression of this protein was significantly different between groups according to the signalling pathway array. CONCLUSION: Our findings suggest that the intestinal microbiota regulates the renal microenvironment by reducing immune inflammatory responses through the inhibition of the NF-κB signalling pathway, thereby delaying renal senescence in aged male mice.
RESUMEN
Diabetic kidney disease (DKD) is one of the leading causes of end-stage renal disease worldwide and significantly increases the risk of premature death due to cardiovascular diseases. Elevated urinary albumin levels are an important clinical feature of DKD. Effective control of albuminuria not only delays glomerular filtration rate decline but also markedly reduces cardiovascular disease risk and all-cause mortality. New drugs for treating DKD proteinuria, including sodium-glucose cotransporter two inhibitors, mineralocorticoid receptor antagonists, and endothelin receptor antagonists, have shown significant efficacy. Auxiliary treatment with proprietary Chinese medicine has also yielded promising results; however, it also faces a broader scope for development. The mechanisms by which these drugs treat albuminuria in patients with DKD should be described more thoroughly. The positive effects of combination therapy with two or more drugs in reducing albuminuria and protecting the kidneys warrant further investigation. Therefore, this review explores the pathophysiological mechanism of albuminuria in patients with DKD, the value of clinical diagnosis and prognosis, new progress and mechanisms of treatment, and multidrug therapy in patients who have type 2 diabetic kidney disease, providing a new perspective on the clinical diagnosis and treatment of DKD.
RESUMEN
Background: Population aging is a pivotal trend observed globally, and the exposure to heavy metals can exacerbate the aging process and lead to kidney damage. However, the impact of combined heavy metal exposure on renal function among older individuals remains elusive. Our study employs machine learning techniques to delve into the effects and underlying mechanisms of mixed exposure to heavy metals on the renal function of the aging population. Methods: This study extracted comprehensive data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2015 and 2020. A total of 3,175 participants aged 60 years and above, with complete information on six metals - lead, cadmium, manganese, cobalt, mercury, and selenium, along with relevant covariates, were included in the study. To assess the impact of single or mixed metal exposure on the renal function of older adult individuals, various statistical techniques were employed: multiple logistic regression, weighted quantitative sum (WQS) regression, Bayesian kernel machine regression (BKMR), and mediation effects analysis. Results: Multiple logistic regression revealed that selenium and manganese were protective factors for chronic kidney disease (CKD). Cobalt was a risk factor for CKD. High concentrations of lead, cadmium, and cobalt were risk factors for urinary albumin creatinine ratio (ACR). WQS analyses revealed that mixed metal exposure was positively correlated with estimated glomerular filtration rate (eGFR) but negatively correlated with CKD. Selenium and manganese can neutralize the effects of other metals on eGFR. Mixed metal exposure was positively correlated with ACR, with lead and cadmium having a substantial effect. Mediation analysis showed that uric acid (UA) had a mediating effect of 9.7% and -19.7% in the association between mixed metals exposure and proteinuria and CKD, respectively. Conclusion: The impact of heavy metals on renal function in the older adult differs from that of adolescents and adults. This study suggests that elevated levels of mixed metals exposure are linked to proteinuria and CKD, with UA serving as a mediating factor.
Asunto(s)
Metales Pesados , Encuestas Nutricionales , Insuficiencia Renal Crónica , Ácido Úrico , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Insuficiencia Renal Crónica/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Tasa de Filtración Glomerular/efectos de los fármacos , Factores de Riesgo , Riñón/efectos de los fármacos , Anciano de 80 o más AñosRESUMEN
We aimed to test whether red blood cell distribution width (RDW) to monocyte percentage ratio (RMR) was associated with the acute-phase prognosis of coronavirus disease 2019 (COVID-19) in chronic kidney disease (CKD) patients. Prospective enrollment and 90-day follow-up of CKD patients with COVID-19 were conducted from December 1, 2022 to January 31, 2023. Demographics, clinical data, and laboratory and radiographic findings were collected, and multiple logistic regression, subgroup analysis, and receiver operating characteristic (ROC) curve analysis were performed. A total of 218 patients were enrolled, with a mean age of 59 years and 69.7% being male. The 90-day mortality rate was 24.8%. The lnRMR level was 5.18 (4.91-5.43) and emerged as an independent risk factor (OR: 3.01, 95% CI: 1.72-5.85). The lnRMR-mortality association was consistent across sex, age, CKD stage, COVID-19 vaccination, and comorbidity subgroups. The area under the ROC curve of lnRMR was 0.737 (95% CI: 0.655-0.819). Our findings indicate that lnRMR is a simple and practical predictor for identifying high-risk CKD patients during the acute phase of COVID-19.
Asunto(s)
COVID-19 , Índices de Eritrocitos , Monocitos , Insuficiencia Renal Crónica , Humanos , COVID-19/mortalidad , COVID-19/sangre , COVID-19/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/complicaciones , Anciano , Pronóstico , SARS-CoV-2 , Curva ROC , Factores de Riesgo , AdultoRESUMEN
BACKGROUND: Lupus nephritis (LN) is the most common cause of kidney injury in systemic lupus erythematosus (SLE) patients and is associated with increased mortality. DNA methylation, one of the most important epigenetic modifications, has been reported as a key player in the pathogenesis of SLE. Hence, our article aimed to explore DNA methylation in CD4+ T cells from LNs to identify additional potential biomarkers and pathogenic genes involved in the progression of LN. METHODS: Our study enrolled 46 SLE patients with or without kidney injury and 23 healthy controls from 2019 to 2022. CD4+ T cells were sorted for DNA methylation genotyping and RNA-seq. Through bioinformatics analysis, we identified the significant differentially methylated CpG positions (DMPs) only in the LN group and validated them by Bisulfite PCR. Integration analysis was used to screen for differentially methylated and expressed genes that might be involved in the progression of LN, and the results were analyzed via cell experiments and flow cytometry. RESULTS: We identified 243 hypomethylated sites and 778 hypermethylated sites only in the LN cohort. Three of these DMPs, cg08332381, cg03297029, and cg16797344, were validated by Bisulfite PCR and could be potential biomarkers for LN. Integrated analysis revealed that the expression of BCL2L14 and IFI27 was regulated by DNA methylation, which was validated by azacytidine (5-aza) treatment. The overexpression of BCL2L14 in CD4+ T cells might induce renal fibrosis and inflammation by regulating the differentiation and function of Tfh cells. CONCLUSION: Our study identified novel aberrant DMPs in CD4+ T cells only in LN patients and DNA methylation-regulated genes that could be potential LN biomarkers. BCL2L14 is likely involved in the progression of LN and might be a treatment target.
Asunto(s)
Linfocitos T CD4-Positivos , Metilación de ADN , Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Metilación de ADN/genética , Linfocitos T CD4-Positivos/metabolismo , Femenino , Masculino , Adulto , Nefritis Lúpica/genética , Lupus Eritematoso Sistémico/genética , Epigénesis Genética/genética , Islas de CpG/genética , Estudios de Casos y Controles , Persona de Mediana Edad , BiomarcadoresRESUMEN
OBJECTIVE: Non-malignant pleural effusions (NMPE) are common in hospitalised patients. Data on NMPE inpatients are scarce and the factors influencing the prognosis are unknown. DESIGN: This was a retrospective cohort study. SETTING AND PARTICIPANTS: We conducted a retrospective cohort of inpatients (n=86 645) admitted to the Chinese PLA General Hospital from 2018 to 2021, based on electronic medical records. The observations of 4934 subjects with effusions confirmed by chest radiological tests (CT or X-ray) without a diagnosis of malignancy were followed during admission. Logistic regression was used to analyse organ damage and other factors associated with in-hospital death. Patients were clustered according to their laboratory indicators, and the association between the clustering results and outcomes was studied. OUTCOME: The outcome of this study was in-hospital mortality. RESULTS: Among 4934 patients, heart failure + pneumonia + renal dysfunction was the most common (15.12%) among 100 different diagnostic groups. 318 (6.4%) patients died during hospitalisation. Lung (OR 3.70, 95% CI 2.42 to 5.89), kidney (OR 2.88, 95% CI 2.14 to 3.90) and heart (1.80, 95% CI 1.29 to 2.55) damage were associated with in-hospital mortality. Hierarchical clustering of laboratory indicators (estimated glomerular filtration rate, white blood cell count, platelet count, haemoglobin, N-terminal pro-B-type natriuretic peptide, serum albumin) demonstrated the ability to discriminate patients at high risk of in-hospital death. CONCLUSION: Comorbidities and multiorgan failure are the prominent characteristics of NMPE patients, which increase the risk of in-hospital mortality, and comprehensive intervention for specific comorbidity patterns is suggested.
Asunto(s)
Mortalidad Hospitalaria , Hospitalización , Derrame Pleural , Humanos , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Pronóstico , Hospitalización/estadística & datos numéricos , China/epidemiología , Factores de Riesgo , Anciano de 80 o más Años , Neumonía/epidemiología , Neumonía/mortalidad , Adulto , Insuficiencia Cardíaca/mortalidadRESUMEN
CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.
Asunto(s)
Antígenos Bacterianos , Autofagia , Proteínas Bacterianas , Células Epiteliales , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D , Lisosomas , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Línea CelularRESUMEN
The prognosis of patients with IgA nephropathy (IgAN) is variable but overall not good. Almost all patients with IgAN are at risk of developing end-stage renal disease within their expected lifetime. The models presently available for prediction of the risk of progression of IgAN, including the International IgA Nephropathy Prediction Tool, consist of traditional clinical, pathological, and therapeutic indicators. Finding biomarkers to improve the existing risk prediction models or replace pathological indicators is important for clinical practice. Many studies have attempted to identify biomarkers for prediction of progression of IgAN, such as galactose-deficient IgA1, complement, a spectrum of protein biomarkers, non-coding RNA, and shedding cells. This article reviews the biomarkers of progression of IgAN identified in recent years, with a focus on those with clinical value, in particular the combination of multiple biomarkers into a biomarker spectrum. Future research should focus on establishing a model based primarily on biomarkers that can predict progression of IgAN and testing it in various patient cohorts.
RESUMEN
Background: Sodium/glucose cotransporter-2 inhibitors (SGLT2i) are associated with cardiovascular benefits. The aim of this systematic review and meta-analysis is to summarize the influence of SGLT2i on the incidence of acute kidney injury (AKI), and to ascertain whether it is affected by confounding variables such as age, baseline renal function and concurrent use of renin-angiotensin-aldosterone system inhibitors (RAASi) or mineralocorticoid receptor antagonists (MRA). Methods: PubMed, Embase, and Cochrane Library databases were searched for randomized controlled trials comparing the influence of SGLT2i versus placebo/blank treatment on AKI in the adult population. A fixed-effect model was used if the heterogeneity was not significant; otherwise, a randomized-effect model was used. Results: Eighteen studies comprising 98,989 patients were included. Compared with placebo/blank treatment, treatment with SGLT2i significantly reduced the risk of AKI (risk ratio [RR]: 0.78, 95% confidence interval [CI]: 0.71 to 0.84, p < 0.001; I 2 = 0%). Subgroup analysis suggested consistent results in patients with diabetes, chronic kidney disease, and heart failure (for subgroup difference, p = 0.32). Finally, univariate meta-regression suggested that the influence of SGLT2i on the risk of AKI was not significantly modified by variables such as age (coefficient: 0.011, p = 0.39), baseline estimated glomerular filtration rate (coefficient: -0.0042, p = 0.13) or concomitant use of RAASi (coefficient: 0.0041, p = 0.49) or MRA (coefficient: -0.0020, p = 0.34). Conclusion: SGLT2i may be effective in reducing the risk of AKI, and the effect might not be modified by age, baseline renal function and concurrent use of RAASi or MRA.
RESUMEN
Aging is closely associated with inflammation, which affects renal function reserve (RFR) in the kidneys. This study aims to investigate the impact of reduced RFR reduction on kidney aging and the influence of renal inflammation and RFR reduction on this process. Natural aging rats and those subjected to unilateral nephrectomy (UNX), 1/6 nephrectomy (1/6NX), and unilateral ureteral obstruction (UUO) were observed at 6, 12, 18, and 21 months. Our findings suggest that RFR reduction and renal inflammation can accelerate kidney aging, and inflammation contributes more. Metabolomics analysis revealed alterations in amino acid metabolism contribute to RFR decline. Furthermore, experiments in vitro confirmed the involvement of pentose phosphate pathway (PPP) in promoting aging though inflammation. Our research provides novel insights into for the mechanism of kidney aging and provides indirect support for clinical treatment decisions, such as addressing kidney inflammation, stones, or tumors that may necessitate partial or complete nephrectomy.
RESUMEN
OBJECTIVE: To explore the potential of metanephric mesenchymal cells (MMCs) for osteogenesis and naringin's ability to enhance this process and its molecular mechanism. METHODS: Porcine MMCs at 70 days of gestation were used as tool cells, cultured in osteogenic induction medium, identified by immunocytochemistry staining. Osteogenic potential of porcine MMCs and naringin's ability to enhance this process was tested by detecting changes in cell viability, alkaline phosphatase (ALP) activity, the expression of runt-related transcription factor 2 (Runx2), osteopontin (OPN) and osteocalcin (OCN), and the formation of mineralized nodules, and the application of the p38 signaling pathway inhibitor SB203580 vitiated the osteogenesis-promoting effect of naringin. RESULTS: Immunocytochemical staining showed that the cells were Vimentin and Six2(+), E-cadherin and CK-18(-). Naringin can activate the p38 signaling pathway to enhance the osteogenesis of porcine MMCs by increasing cell viability, ALP activity, the expressions of Runx2, OPN and OCN, and the formation of mineralized nodules (P<0.05). The application of p38 signaling pathway inhibitor SB203580 vitiated the osteogenesis-promoting effect of naringin, manifested by decreased ALP activity, the expressions of Runx2, OPN and OCN, and the formation of mineralized nodules (P<0.05). CONCLUSION: Naringin, the active ingredient of Chinese herbal medicine Rhizoma Drynariae for nourishing Shen (Kidney) and strengthening bone, enhances the osteogenic differentiation of renal MMCs through the p38 signaling pathway.
Asunto(s)
Diferenciación Celular , Supervivencia Celular , Flavanonas , Células Madre Mesenquimatosas , Osteogénesis , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Flavanonas/farmacología , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Porcinos , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Riñón/efectos de los fármacos , Riñón/citología , Transducción de Señal/efectos de los fármacos , Imidazoles/farmacología , PiridinasRESUMEN
ETHNIC PHARMACOLOGICAL RELEVANCE: Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW: This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS: We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS: After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION: Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.