Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Appl Mater Interfaces ; 16(38): 50369-50388, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39264653

RESUMEN

Infectious bone defects resulting from surgery, infection, or trauma are a prevalent clinical issue. Current treatments commonly used include systemic antibiotics and autografts or allografts. Nevertheless, therapies come with various disadvantages, including multidrug-resistant bacteria, complications arising from the donor site, and immune rejection, which makes artificial implants desirable. However, artificial implants can fail due to bacterial infections and inadequate bone fusion after implantation. Thus, the development of multifunctional bone substitutes that are biocompatible, antibacterial, osteoconductive, and osteoinductive would be of great clinical importance. This study designs and prepares 2D graphene oxide (GO) and black phosphorus (BP) reinforced porous collagen (Col) scaffolds as a viable strategy for treating infectious bone defects. The fabricated Col-GO@BP scaffold exhibited an efficient photothermal antibacterial effect under near-infrared (NIR) irradiation. A further benefit of the NIR-controlled degradation of BP was to promote biomineralization by phosphorus-driven and calcium-extracted phosphorus in situ. The abundant functional groups in GO could synergistically capture the ions and enhance the in situ biomineralization. The Col-GO@BP scaffold facilitated osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) by leveraging its mild photothermal effect and biomineralization process, which upregulated heat shock proteins (HSPs) and activated PI3K/Akt pathways. Additionally, systematic in vivo experiments demonstrated that the Col-GO@BP scaffold obviously promotes infectious bone repair through admirable photothermal antibacterial performance and enhanced vascularization. As a result of this study, we provide new insights into the photothermal activity of GO@BP nanosheets, their degradation, and a new biological application for them.


Asunto(s)
Antibacterianos , Colágeno , Grafito , Células Madre Mesenquimatosas , Fósforo , Andamios del Tejido , Animales , Ratas , Antibacterianos/química , Antibacterianos/farmacología , Biomineralización/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Colágeno/química , Escherichia coli/efectos de los fármacos , Grafito/química , Grafito/farmacología , Rayos Infrarrojos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fósforo/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química
2.
Plant Signal Behav ; 19(1): 2382497, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39312190

RESUMEN

The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.


Asunto(s)
Enfermedades de las Plantas , Solanaceae , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Solanaceae/virología , Solanaceae/inmunología , Proteínas NLR/metabolismo , Resistencia a la Enfermedad/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad , Inmunidad de la Planta , Interacciones Huésped-Patógeno/inmunología
3.
Int J Nanomedicine ; 19: 8901-8927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233743

RESUMEN

Introduction: Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods: Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results: The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion: Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.


Asunto(s)
Antibacterianos , Grafito , Hidrogeles , Plata , Cicatrización de Heridas , Grafito/química , Grafito/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Plata/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Humanos , Ratones , Terapia Fototérmica/métodos , Nanopartículas/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39155989

RESUMEN

The precise prediction of hypotension is vital for advancing preemptive patient care strategies. Traditional machine learning approaches, while instrumental in this field, are hampered by their dependence on structured historical data and manual feature extraction techniques. These methods often fall short of recognizing the intricate patterns present in physiological signals. Addressing this limitation, our study introduces an innovative application of deep learning technologies, utilizing a sophisticated end-to-end architecture grounded in XResNet. This architecture is further enhanced by the integration of contrastive learning and a value attention mechanism, specifically tailored to analyze arterial blood pressure (ABP) waveform signals. Our approach improves the performance of hypotension prediction over the existing state-of-theart ABP model [7]. This research represents a step towards optimizing patient care, embodying the next generation of AI-driven healthcare solutions. Through our findings, we demonstrate the promise of deep learning in overcoming the limitations of conventional prediction models, thereby offering an avenue for enhancing patient outcomes in clinical settings.

5.
J Colloid Interface Sci ; 677(Pt B): 1045-1060, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39178668

RESUMEN

Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.

6.
Int J Biol Macromol ; 276(Pt 2): 133798, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992555

RESUMEN

In this paper, the size-controllable nano­silver particles (AgNPs) were synthesized from walnut green husk polysaccharide, and its cytotoxicity and antibacterial activity were evaluated. Firstly, acidic polysaccharide WGHP2 was extracted from walnut green husk, and then the silver ion in AgNO3 was reduced in WGHP2 aqueous solution using NaBH4, so as to synthesize the nano­silver composite. The nano­silver composite was characterized by transmission electron microscope, Fourier infrared spectroscopy, ultraviolet-visible spectrometer, scanning electron microscope, inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The results show that AgNPs stabilized by WGHP2 are mainly regular spheres with an average particle size distribution of 15.04-19.23 nm. The particle size distribution and morphology of AgNPs changed with the concentration of silver precursor, which is related to the dispersion of silver precursor in polysaccharide aqueous solution and the formation of AgO coordination bond between silver precursor and polysaccharide molecules. These coordination bonds changed the ability of nanoparticles to produce and release Ag+, and thus regulated their antibacterial activity and cytotoxicity, as evidenced by the experimental result of the cytotoxicity of the nano­silver particle against PC12 cells and the bacteriostatic effect on E.coli and S.aureus. Conclusively, WGHP2-Ag has good stability, antibacterial activity and low cytotoxicity.


Asunto(s)
Antibacterianos , Escherichia coli , Juglans , Nanopartículas del Metal , Polisacáridos , Plata , Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Juglans/química , Polisacáridos/química , Polisacáridos/farmacología , Animales , Escherichia coli/efectos de los fármacos , Ratas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Células PC12 , Tamaño de la Partícula
7.
Thyroid Res ; 17(1): 10, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825672

RESUMEN

BACKGROUND: Ultrasound-guided thermal ablation (TA) has emerged as a robust therapeutic approach for treating solid tumors in multiple organs, including the thyroid. Yet, its efficacy and safety profile in the management of Graves' Disease (GD) remains to be definitively established. METHODS: A retrospective study was conducted on 50 GD patients treated with TA between October 2017 and December 2021. Key metrics like thyroid volume, volume reduction rate (VRR), thyroid hormones, and basal metabolic rate (BMR) were evaluated using paired Wilcoxon tests. RESULTS: The intervention of ultrasound-guided TA yielded a statistically significant diminution in total thyroid volume across all postoperative follow-up intervals-1, 3, 6, and 12 months-relative to pre-intervention baselines (p < 0.001). The median VRR observed at these time points were 17.5%, 26.5%, 34.4%, and 39.8%, respectively. Euthyroid status was corroborated in 96% of patients at the one-year follow-up milestone. Transient tachycardia and dysphonia were observed in three patients, while a solitary case of skin numbness was noted. Crucially, no instances of enduring injury to the recurrent laryngeal nerve (RLN) were documented. CONCLUSIONS: Our investigation substantiates ultrasound-guided TA as a pragmatic, well-tolerated, and safe therapeutic modality for GD. It effectively improves symptoms of hyperthyroidism, engenders a substantial reduction in thyroid volume, and restores thyroid hormone and BMR to physiological levels. Given its favorable safety profile, enhanced cosmetic outcomes, and minimally invasive nature, ultrasound-guided TA is a compelling alternative to thyroidectomy for GD patients.

8.
World J Surg Oncol ; 22(1): 135, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778366

RESUMEN

BACKGROUND: Sublobar resection for ground-glass opacity became a recommend surgery choice supported by the JCOG0804/JCOG0802/JCOG1211 results. Sublobar resection includes segmentectomy and wedge resection, wedge resection is suitable for non-invasive lesions, but in clinical practice, when pathologists are uncertain about the intraoperative frozen diagnosis of invasive lesions, difficulty in choosing the appropriate operation occurs. The purpose of this study was to analyze how to select invasive lesions with clinic-pathological characters. METHODS: A retrospective study was conducted on 134 cases of pulmonary nodules diagnosed with minimally invasive adenocarcinoma by intraoperative freezing examination. The patients were divided into two groups according to intraoperative frozen results: the minimally invasive adenocarcinoma group and the at least minimally invasive adenocarcinoma group. A variety of clinical features were collected. Chi-square tests and multiple regression logistic analysis were used to screen out independent risk factors related to pathological upstage, and then ROC curves were established. In addition, an independent validation set included 1164 cases was collected. RESULTS: Independent risk factors related to pathological upstage were CT value, maximum tumor diameter, and frozen result of AL-MIA. The AUC of diagnostic mode was 71.1% [95%CI: 60.8-81.3%]. The independent validation included 1164 patients, 417 (35.8%) patients had paraffin-based pathology of invasive adenocarcinoma. The AUC of diagnostic mode was 75.7% [95%CI: 72.9-78.4%]. CONCLUSIONS: The intraoperative frozen diagnosis was AL-MIA, maximum tumor diameter larger than 15 mm and CT value is more than - 450Hu, highly suggesting that the lung GGO was invasive adenocarcinoma which represent a higher risk to recurrence. For these patients, sublobectomy would be insufficient, lobectomy or complementary treatment is encouraged.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Estadificación de Neoplasias , Neumonectomía , Humanos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/patología , Anciano , Neumonectomía/métodos , Pronóstico , Estudios de Seguimiento , Invasividad Neoplásica , China/epidemiología , Factores de Riesgo , Adulto , Tomografía Computarizada por Rayos X/métodos , Curva ROC , Pueblos del Este de Asia
10.
Int J Biol Macromol ; 266(Pt 2): 131277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565366

RESUMEN

Bacteria-infected wound healing has attracted widespread attention in biomedical engineering. Wound dressing is a potential strategy for repairing infectious wounds. However, the development of wound dressing with appropriate physiochemical, antibacterial, and hemostatic properties, remains challenging. Hence, there is a motivation to develop new synthetic dressings to improve bacteria-infected wound healing. Here, we fabricate a biocompatible sponge through the covalent crosslinking of collagen (Col), quaternized chitosan (QCS), and graphene oxide (GO). The resulting Col-QCS-GO sponge shows an elastic modulus of 1.93-fold higher than Col sponge due to enhanced crosslinking degree by GO incorporation. Moreover, the fabricated Col-QCS-GO sponge shows favorable porosity (84.30 ± 3.12 %), water absorption / retention (2658.0 ± 113.4 % / 1114.0 ± 65.7 %), and hemostasis capacities (blood loss <50.0 mg). Furthermore, the antibacterial property of the Col-QCS-GO sponge under near-infrared (NIR) irradiation is significantly enhanced (the inhibition rates are 99.9 % for S. aureus and 99.9 % for E. coli) due to the inherent antibacterial properties of QCS and the photothermal antibacterial capabilities of GO. Finally, the Col-QCS-GO+NIR sponge exhibits the lowest percentage of wound area (9.05 ± 1.42 %) at day 14 compared to the control group (31.61 ± 1.76 %). This study provides new insights for developing innovative sponges for bacteria-infected wound healing.


Asunto(s)
Antibacterianos , Quitosano , Grafito , Hemostáticos , Cicatrización de Heridas , Animales , Ratas , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Quitosano/química , Quitosano/farmacología , Colágeno/química , Colágeno/farmacología , Escherichia coli/efectos de los fármacos , Grafito/química , Grafito/farmacología , Hemostasis/efectos de los fármacos , Hemostáticos/farmacología , Hemostáticos/química , Porosidad , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...