Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(48): 16408-16412, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30457848

RESUMEN

An important challenge for reaction-based fluorescent probes is that they generally require analyte consumption for fluorescence signal generation, thus creating potential perturbation of native analyte homeostasis or change of local concentrations. Herein, we reported two formaldehyde (FA) regeneration fluorescent probes, NAP-FAP-1 and NAP-FAP-2. An unprecedented regiospecific FA-induced intramolecularity strategy is implemented in the probe design, which adopts 3-(benzylamino)-succinimide as the FA-selective reaction group. The probes are able to capture the analyte molecule, induce regiospecific imide bond cleavage, and then release the captured FA molecule with simultaneous fluorescence turn-on response via a unique dual PeT/ICT quenching mechanism. The probes have shown potentials in detection, comparison, and imaging of FA levels intracellularly and inside lysosomes. These features make them useful for the study of FA homeostasis and functions in biological systems with minimal perturbation.

2.
Acta Pharm Sin B ; 8(3): 320-338, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29881672

RESUMEN

Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.

3.
RSC Adv ; 8(24): 13388-13392, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542560

RESUMEN

Herein, a simple two-photon turn-on fluorescent probe, N-(6-acyl-2-naphthayl)-maleimide (1), based on a dual PeT/ICT quenching mechanism is reported for the highly sensitive and selective detection of cysteine (Cys) over other biothiols. The probe was applied in the two-photon imaging of Cys in cultured HeLa cells, excited by a near-infrared laser at 690 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA