Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.658
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167211, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701957

RESUMEN

The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.

2.
Clin Transl Allergy ; 14(5): e12357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38730525

RESUMEN

BACKGROUND: Asthma is the most common chronic disease among children and poses a significant threat to their health. This study aims to assess the relationship between various plasma proteins and childhood asthma, thereby identifying potential therapeutic targets. METHODS: Based on publicly available genome-wide association study summary statistics, we employed a two-sample Mendelian randomization (MR) approach to elucidate the causal relationship between plasma proteins and asthma. Mediation analysis was then conducted to evaluate the indirect influence of plasma proteins on childhood asthma mediated through risk factors. Comprehensive analysis was also conducted to explore the association between plasma proteins and various phenotypes using the UK Biobank dataset. RESULTS: MR analysis uncovered a causal relationship between 10 plasma proteins and childhood asthma. Elevated levels of seven proteins (TLR4, UBP25, CBR1, Rac GTPase-activating protein 1 [RGAP1], IL-21, MICB, and PDE4D) and decreased levels of three proteins (GSTO1, LIRB4 and PIGF) were associated with an increased risk of childhood asthma. Our findings further validated the connections between reported risk factors (body mass index, mood swings, hay fever or allergic rhinitis, and eczema or dermatitis) and childhood asthma. Mediation analysis revealed the influence of proteins on childhood asthma outcomes through risk factors. Furthermore, the MR analysis identified 73 plasma proteins that exhibited causal associations with at least one risk factor for childhood asthma. Among them, RGAP1 mediates a significant proportion (25.10%) of the risk of childhood asthma through eczema or dermatitis. Finally, a phenotype-wide association study based on these 10 proteins and 1403 diseases provided novel associations between these biomarkers and multiple phenotypes. CONCLUSION: Our study comprehensively investigated the causal relationship between plasma proteins and childhood asthma, providing novel insights into potential therapeutic targets.

3.
Pharmacol Res ; : 107206, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729588

RESUMEN

Chemoresistance is a major therapeutic challenge in advanced gastric cancer (GC). N6-methyladenosine (m6A) RNA modification has been shown to play fundamental roles in cancer progression. However, the underlying mechanisms by which m6A modification of circRNAs contributes to GC and chemoresistance remain unknown. We found that hsa_circ_0030632 (circUGGT2) was a predominant m6A target of METTL14, and METTL14 knockdown (KD) reduced circUGGT2 m6A levels but increased its mRNA levels. The expression of circUGGT2 was markedly increased in cisplatin (DDP)-resistant GC cells. CircUGGT2 KD impaired cell growth, metastasis and DDP-resistance in vitro and in vivo, but circUGGT2 overexpression prompted these effects. Furthermore, circUGGT2 was validated to sponge miR-186-3p and upregulate MAP3K9 and could abolish METTL14-caused miR-186-3p upregulation and MAP3K9 downregulation in GC cells. circUGGT2 negatively correlated with miR-186-3p expression and harbored a poor prognosis in patients with GC. Our findings unveil that METTL14-dependent m6A modification of circUGGT2 inhibits GC progression and DDP resistance by regulating miR-186-3p/MAP3K9 axis.

4.
Food Chem ; 452: 139430, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38713984

RESUMEN

As emerging contaminants, microplastics threaten food and environmental safety. Dibutyl phthalate (DBP, released from microplastics) and benzo[a]pyrene (BaP, adsorbed on microplastics) coexisted in food and the environment, harming human health, requesting a sensitive and simultaneous testing method to monitor. To address current sensitivity, simultaneousness, and on-site portability challenges during dual targets in complex matrixes, CuCo2S4/Fe3O4 nanoflower was designed to develop a smartphone-assisted photoelectrochemical point-of-care test (PEC POCT). The carrier transfer mechanism in CuCo2S4/Fe3O4 was proven via density functional theory calculation. Under optimal conditions, the PEC POCT showed low detection limits of 0.126, and 0.132 pg/mL, wide linearity of 0.001-500, and 0.0005-50 ng/mL for DBP and BaP, respectively. The smartphone-assisted PEC POCT demonstrated satisfied recoveries (80.00%-119.63%) in real samples. Coherent results were recorded by comparing the PEC POCT to GC-MS (DBP) and HPLC (BaP). This novel method provides a practical platform for simultaneous POCT for food safety and environment monitoring.

5.
Cancer Lett ; : 216951, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38734159

RESUMEN

Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK+ effector memory T cells were relatively enriched and CXCL13+ exhausted T cells and regulator T cells decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B+ memory B cells suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK+ Tem and TNFRSF13B+ Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.

6.
Int J Surg ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729123

RESUMEN

BACKGROUND: Frailty is recognized as a surrogate for physiological age and has been established as a valid and independent predictor of postoperative morbidity, mortality, and complications. ERAS can enhance surgical safety by minimizing stress responses in frail patients, enabling surgeons to discharge patients earlier. However, the question of whether and to what extent the frailty impacts the post-ERAS outcomes in older patients remains. MATERIALS AND METHODS: An evidence-based ERAS program was implemented in our center from January 2019. This is a prospective cohort study of patients aged ≥75 years who underwent open transforaminal lumbar interbody fusion (TLIF) for degenerative spine disease from April 2019 to October 2021. Frailty was assessed with the Fried frailty scale (FP scale), and patients were categorized as non/prefrail (FP 0-2) or frail (FP ≥ 3). The preoperative variables, operative data, postoperative outcomes and follow-up information were compared between the two groups. Univariate and multivariate logistic regression analyses were used to identify risk factors for 90-day major complications and prolonged length of hospital stay (LOS) after surgery. RESULTS: A total of 245 patients (age of 79.8 ± 3.4 yr) who had a preoperative FP score recorded and underwent scheduled TLIF surgery were included in the final analysis. Comparisons between non-frail and prefrail/frail patients revealed no significant difference in age, sex, and surgery-related variables. Even after adjusting for multiple comparisons, the association between Fried frailty and ADL-dependency, IADL-dependency, and malnutrition remained significant. Preoperative frailty was associated with increased rates of postoperative adverse events. A higher CCI grade was an independent predictor for 90-day major complications, while Fried frailty and MNA-SF scores <12 were predictive of poor postoperative recovery. CONCLUSION: Frail older patients had more adverse post-ERAS outcomes after TLIF compared to non/prefrail older patients. Continued research and multidisciplinary collaboration will be essential to refine and optimize protocols for surgical care in frail older adults.

7.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700925

RESUMEN

Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.


Asunto(s)
Infecciones por Paramyxoviridae , Paramyxovirinae , Paramyxovirinae/genética , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/veterinaria , Mamíferos , China , Filogenia , Genoma Viral , Especificidad del Huésped
8.
Clin Chim Acta ; 559: 119705, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702035

RESUMEN

BACKGROUND: Early recognition and timely intervention for AKI in critically ill patients were crucial to reduce morbidity and mortality. This study aimed to use biomarkers to construct a optimal machine learning model for early prediction of AKI in critically ill patients within seven days. METHODS: The prospective cohort study enrolled 929 patients altogether who were admitted in ICU including 680 patients in training set (Jiefang Campus) and 249 patients in external testing set (Binjiang Campus). After performing strict inclusion and exclusion criteria, 421 patients were selected in training set for constructing predictive model and 167 patients were selected in external testing for evaluating the predictive performance of resulting model. Urine and blood samples were collected for kidney injury associated biomarkers detection. Baseline clinical information and laboratory data of the study participants were collected. We determined the average prediction efficiency of six machine learning models through 10-fold cross validation. RESULTS: In total, 78 variables were collected when admission in ICU and 43 variables were statistically significant between AKI and non-AKI cohort. Then, 35 variables were selected as independent features for AKI by univariate logistic regression. Spearman correlation analysis was used to remove two highly correlated variables. Three ranking methods were used to explore the influence of 33 variables for further determining the best combination of variables. The gini importance ranking method was found to be applicable for variables filtering. The predictive performance of AKIMLpred which constructed by the XGBoost algorithm was the best among six machine learning models. When the AKIMLpred included the nine features (NGAL, IGFBP7, sCysC, CAF22, KIM-1, NT-proBNP, IL-6, IL-18 and L-FABP) with the highest influence ranking, its model had the best prediction performance, with an AUC of 0.881 and an accuracy of 0.815 in training set, similarly, with an AUC of 0.889 and an accuracy of 0.846 in validation set. Moreover, the performace was slightly outperformed in testing set with an AUC of 0.902 and an accuracy of 0.846. The SHAP algorithm was used to interpret the prediction results of AKIMLpred. The web-calculator of AKIMLpred was shown for predicting AKI with more convenient(https://www.xsmartanalysis.com/model/list/predict/model/html?mid=8065&symbol=11gk693982SU6AE1ms21). AKIMLpred was better than the optimal model built with only routine tests for predicting AKI in critically ill patients within 7 days. CONCLUSION: The model AKIMLpred constructed by the XGBoost algorithm with selecting the nine most influential biomarkers in the gini importance ranking method had the best performance in predicting AKI in critically ill patients within 7 days. This data-driven predictive model will help clinicians to make quick and accurate diagnosis.

9.
Adv Sci (Weinh) ; : e2403894, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704696

RESUMEN

As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S-nitrosoglutathione reductase GSNOR-mediated de-nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S-nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de-nitrosylation. Removing S-nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR-mediated de-nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.

10.
Hum Reprod ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725195

RESUMEN

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

11.
Food Funct ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726659

RESUMEN

Exposure to food allergens elicits fast changes in the intestinal microenvironment, which guides the development of allergic reactions. Investigating the key information about these changes may help in better understanding food allergies. In this research, we explored the relationship between a food allergy and extracellular adenosine triphosphate (ATP), a danger molecule that has been proved to regulate the onset of allergic asthma and dermatitis but has not been studied in food allergies, by developing a unique animal model through allergen-containing diet feeding. After consuming an allergen-containing diet for 7 days, the allergic mice exhibited severe enteritis with elevated luminal ATP levels. The dysregulated luminal ATP worsened food-induced enteritis by enhancing Th17 cell responses and increasing mucosal neutrophil accumulation. In vitro experiments demonstrated that ATP intervention facilitated Th17 cell differentiation and neutrophil activation. In addition, the diet-induced allergy showed noticeable gut dysbiosis, characterized by decreased microbial diversity and increased diet-specific microbiota signatures. As the first, we show that food-induced enteritis is associated with an elevated concentration of luminal ATP. The dysregulated extracellular ATP exacerbated the enteritis of mice to a food challenge by manipulating intestinal Th17 cells and neutrophils.

12.
Acta Pharmacol Sin ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698214

RESUMEN

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

13.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38746044

RESUMEN

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38747453

RESUMEN

OBJECTIVES: Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients. METHODS: A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (Css-min) in overall patients and in age subgroups was analyzed. RESULTS: Voriconazole Css-min correlated positively with age, and mean voriconazole Css-min was significantly higher in the elderly group (P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole Css-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole Css-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole Css-min (>5.5 mg/l) was higher in the elderly patients. When the average Css-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole Css-min in the young group, while the influence of age on voriconazole Css-min exceeded CYP2C19 genotypes in the elderly. CONCLUSION: CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.

15.
Med Oncol ; 41(6): 155, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744773

RESUMEN

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Asunto(s)
Carcinoma Epitelial de Ovario , Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interleucina-6 , MicroARNs , Invasividad Neoplásica , Neoplasias Ováricas , Factor de Transcripción STAT3 , Transducción de Señal , MicroARNs/genética , Humanos , Transición Epitelial-Mesenquimal/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Carcinoma Epitelial de Ovario/patología , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Animales , Invasividad Neoplásica/genética , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Metástasis de la Neoplasia , Ratones Endogámicos BALB C
16.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710854

RESUMEN

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Asunto(s)
Antioxidantes , Bacillus amyloliquefaciens , Aves , Fermentación , Probióticos , Solubilidad , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Animales , Probióticos/química , Probióticos/metabolismo , Aves/microbiología
17.
Plant Dis ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720535

RESUMEN

Cassava (Manihot esculenta) is a perennial crop of the family Euphorbiaceae, widely cultivated due to its phytopharmacological and economic values in China. In November 2022, a leaf spot disease on cassava was observed in Zhanjiang, Guangdong, China (21.17° N, 110.18° E), with 100% disease incidence. About 80 % of leaves were covered with spots on the infected plants. Typical symptoms initially appeared as irregular water-soaked lesions that became brown and whitish with the progress of the disease, lesions gradually expanded and coalesced, causing leaf withering, drying and final fall. Tissues (4 to 5 mm) were excised from the margin of lesions, sterilized in 3% H2O2 solution for 3 min, rinsed three times with sterile water, placed on potato dextrose agar (PDA) medium (containing 50mg/L penicillin), and incubated at 25-28 °C. Ten single hypha isolates with similar morphology were obtained and further purified as single conidium subcultures. The colony was grey whitish with sparse aerial mycelium and colony diameter reached 70.4 mm after four days incubation at 25-28℃ in the dark. Black pycnidia occurring as clusters were spherical or irregular, erumpent at maturity, often with a creamy whitish, conidial cirrus extruding from ostiole after 30-days incubation. Conidiophores were hyaline, smooth, unbranched. Alpha conidia were bi-guttulate, hyaline, ellipsoidal, aseptate, with dimensions of 5.1~7.5×1.9~3.4µm (mean 6.2×2.8 µm, n>50). Beta conidia were abundant, filiform, hyaline, smooth, curved in a hooked shape, with a truncate base and dimensions of 18.5-26.4 × 0.6-1.2µm (mean 23.4 × 1.0 µm, n= 40) . Gamma conidia were not observed. The morphological characteristics were similar to those of Diaporthe ueckeri (Udayanga et al. 2015). The internal transcribed spacer (ITS) region, large subunit (LSU) rRNA sequence, actin (ACT), calmodulin (CAL), histone H3 (HIS), translation elongation factor 1-alpha (TEF1-α), and ß-tubulin (TUB) genes of a representative isolate CCAS-MS-6 (ACCC 35497) were amplified and sequenced using primer pairs: ITS5/ITS4, LR0R/LR5, ACT-512F/ACT-783R, CAL228F/CAL737R, CYLH3F/ H3-1b, EF1-728F/ EF1-986R and Bt2a/Bt2b (Gao et al 2017;Udayanga et al 2014). All sequences were deposited in GenBank (OR361671, OR361672, and OR365605-9). BLAST search showed high similarities with sequences of Diaporthe ueckeri (Tab 1). Maximum likelihood analyses of the concatenated data of CAL, HIS, ITS, TEF and TUB using Mega 11 placed CCAS-MS-6 in the D. ueckeri clade. Thus, the fungus was identified as D. ueckeri. Three one-year old healthy plants were used for pathogenicity tests in pots. Two 15-day old leaves of each plant were cleaned with 75% alcohol, three sites on each leaf were wounded, and sites on one of the leaf were covered with fungal plugs from 15-day-old cultures on PDA, and sites on the other leaf with PDA plugs as a control. All plants were kept at ambient temperature (about 28℃) and covered with plastic bags containing sterile wet cotton to maintain the humidity. Seven days after inoculation, all inoculated sites showed symptoms of necrosis, while control sites showed no symptoms. The same fungus identified on the basis of morphological and molecular criteria was reisolated from symptomatic inoculated leaves. In China, D. ueckeri had been reported to cause diseases on Eucalyptus citriodora, Camellia sinensis, and Michelia shiluensis (Gao et al 2016; Liao et al 2023; Yi et al 2018), this is the first report on M. esculenta. The definition of the disease etiology is a prerequisite to develop effective management strategies.

18.
BMC Biol ; 22(1): 107, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715037

RESUMEN

BACKGROUND: Predation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited. RESULTS: In this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and L-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria. CONCLUSIONS: Our results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.


Asunto(s)
Cilióforos , Cilióforos/fisiología , Cilióforos/genética , Genómica , Genoma de Protozoos , Transcriptoma
19.
Ann Hematol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722387

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS: Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS: About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS: No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.

20.
Adv Mater ; : e2403549, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723270

RESUMEN

It is a pressing need to develop new energy materials to address the existing energy crisis. However, screening optimal targets out of thousands of materials candidates remains a great challenge. Herein, we propose and validate an alternative concept for highly effective materials screening based on dual-atom salphen catalysis units. Such an approach simplifies the design of catalytic materials and reforms the trial-and-error experimental model into a building-blocks-assembly like process. Firstly, density functional theory (DFT) calculations were performed on a series of potential catalysis units which were possible to synthesize. Then, machine learning (ML) was employed to define the structure-performance relationship and acquire chemical insights. Afterwards, the projected catalysis units were integrated into covalent organic frameworks (COFs) to validate the concept Electrochemical tests confirm that Ni-SalphenCOF and Co-SalphenCOF are promising conductive agent-free oxygen evolution reaction (OER) catalysts. This work provides a fast-tracked strategy for design and development of functional materials, which serves as a potentially workable framework for seamlessly integrating DFT calculations, ML, and experimental approaches. This article is protected by copyright. All rights reserved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA