RESUMEN
Rheumatoid arthritis (RA) is a chronically progressive autoimmune disease with increasing age-standardized prevalence and incidence of RA worldwide. Its pathological features are persistent synovitis of the joint, accompanied by the release of a large number of inflammatory cytokines and cartilage and bone destruction. RA can lead to progressive joint damage, stiffness and swelling, vascular and bone-related complications, and irreversible disability, which seriously affects patients' life treatment. Early diagnosis and treatment can enhance the quality of life of RA patients. Platelet-to-lymphocyte ratio (PLR), as a common indicator in routine blood tests, has been proposed as an indicator of systemic inflammation in recent years. Its clinical detection is less invasive, economical, rapid and simple, and has been applied to the clinical evaluation of a variety of diseases. Of note, this indicator is important in assessing disease activity in RA, co-diagnosing RA, detecting subclinical complications, and monitoring responses to anti-inflammatory therapy. Therefore, this review summarizes the relationship between PLR and RA and the relevant mechanisms, further advancing the understanding of the clinical value of PLR.
RESUMEN
As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.
Asunto(s)
Acetatos , Ciclopentanos , Flavonoides , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxilipinas , Hojas de la Planta , Oxilipinas/farmacología , Oxilipinas/metabolismo , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Acetatos/farmacología , Flavonoides/metabolismo , Metaboloma/efectos de los fármacos , Metaboloma/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Asparagaceae/genética , Asparagaceae/metabolismo , Asparagaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismoRESUMEN
Arsenic (As) is a widespread metalloid and human carcinogen found in the natural environment, and multiple toxic effects have been shown to be associated with As exposure. As can be accumulated in the spleen, the largest peripheral lymphatic organ, and long-term exposure to As can lead to splenic injury. In this study, a Sprague-Dawley (SD) rat model of As-poisoned was established, aiming to explore the molecular mechanism of As-induced immune injury through the combined analysis of proteomics and metabolomics of rats' spleen. After feeding the rats with As diet (50â¯mg/kg) for 90 days, the spleen tissue of the rats in the As-poisoned group was damaged, the level of As was significantly higher than that of the control group (P < 0.001), and the level of inflammatory cytokine interleukin-6 (IL-6) was decreased (P < 0.01). Proteomics and metabolomics results showed that a total of 134 differentially expressed proteins (DEPs) (P < 0.05 and fold change > 1.2) and 182 differentially expressed metabolites (DEMs) (VIP >1 and P < 0.05) were identified in the spleens of the As poisoned group compared to the control group (As/Ctrl). The proteomic results highlight the role of hypoxia-inducible factors (HIF), natural killer cell mediated cytotoxicity, and ribosomes. The major pathways of metabolic disruption included arachidonic acid (AA) metabolism, glycerophospholipid metabolism and folate single-carbon pool. The integrated analysis of these two omics suggested that Hmox1, Stat3, arachidonic acid, phosphatidylcholine and leukotriene B4 may play key roles in the mechanism of immune injury to the spleen by As exposure. The results indicate that As exposure can cause spleen damage in rats. Through proteomic and metabolomic analysis, the key proteins and metabolites and their associated mechanisms were obtained, which provided a basis for further understanding of the molecular mechanism of spleen immune damage caused by As exposure.
Asunto(s)
Arsénico , Metabolómica , Proteómica , Ratas Sprague-Dawley , Bazo , Animales , Bazo/efectos de los fármacos , Bazo/metabolismo , Ratas , Arsénico/toxicidad , Masculino , Interleucina-6/metabolismoRESUMEN
Reconstructing a nonlinear dynamical system from empirical time series is a fundamental task in data-driven analysis. One of the main challenges is the existence of hidden variables; we only have records for some variables, and those for hidden variables are unavailable. In this work, the techniques for Carleman linearization, phase-space embedding, and dynamic mode decomposition are integrated to rebuild an optimal dynamical system from time series for one specific variable. Using the Takens theorem, the embedding dimension is determined, which is adopted as the dynamical system's dimension. The Carleman linearization is then used to transform this finite nonlinear system into an infinite linear system, which is further truncated into a finite linear system using the dynamic mode decomposition technique. We illustrate the performance of this integrated technique using data generated by the well-known Lorenz model, the Duffing oscillator, and empirical records of electrocardiogram, electroencephalogram, and measles outbreaks. The results show that this solution accurately estimates the operators of the nonlinear dynamical systems. This work provides a new data-driven method to estimate the Carleman operator of nonlinear dynamical systems.
RESUMEN
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, mainly characterized by perifibrocartilage osteitis of the sacroiliac joints and spinal enthesitis. To date, the exact pathogenesis of AS remains elusive. It is generally believed that AS is a multifactorial disease involving genetics, infection, environment, and immunity. Among them, genetic factors are the primary determinants of disease risk and severity. In recent years, epigenetic mechanisms such as DNA methylation have been extensively surveyed with respect to the pathogenesis of AS. This review summarizes the latest research progress of methylation in AS, from whole-genome sequencing to individual differentially methylated gene. And finally, the role of methylase in AS inflammation, autophagy, and osteogenic differentiation was explored. In summary, the results of this review attempt to explain the role of methylation in the occurrence and development of AS and point out the shortcomings of current methylation research, providing directions for subsequent methylation research in AS.
Asunto(s)
Metilación de ADN , Epigénesis Genética , Espondilitis Anquilosante , Espondilitis Anquilosante/genética , Espondilitis Anquilosante/diagnóstico , HumanosRESUMEN
OBJECTIVE: To identify key factors influencing the therapeutic efficacy of the ketogenic diet (KD) for children with drug-resistant epilepsy and elucidate their interconnected relationships to optimize clinical practice. METHODS: Participants were selected from children receiving KD treatment at West Second University Hospital of Sichuan University from September 2015 to October 2023. Clinical factors pre-KD and post-KD (at the third month) were analyzed systematically using an analytical framework. Descriptive analyses, univariate analyses, and multivariate regression analyses were performed for the entire cohort and subgroups of genetic and non-genetic (i.e., structural and unknown) etiologies. Thereby, the most significant predictors were identified for each relevant dependent variable. Path analysis diagrams were used for visual representation. RESULTS: Of 156 patients, genetic etiology was prevalent (38.5%). In the genetic subgroup, channelopathies predicted lower baseline seizure frequency and increased chance of seizure freedom with KD. Frequent seizures and complex history of anti-seizure medications (ASMs) predicted severe baseline psychomotor abnormalities. Younger age at KD initiation benefited psychomotor improvement. In the non-genetic subgroup, lower baseline seizure frequency increased the likelihood of seizure freedom post-KD. Concurrent use of multiple ASMs helped achieve ≥50% seizure reduction. Boys were more likely to experience psychomotor improvement. A significant correlation was found between ≥50% seizure reduction and psychomotor improvement in both subgroups. Delayed KD initiation (longer epilepsy duration at KD start) was related to a greater number of ASMs used, infrequent seizures, and older age at epilepsy onset. In addition, patients with channelopathies had delayed initiation of KD. SIGNIFICANCE: Children with genetic epilepsy display more pronounced characteristics of epileptic encephalopathy. Early KD intervention is crucial for channelopathies, notably SCN1A variants. For other drug-resistant epilepsy cases, KD alongside diverse ASMs may improve seizure control and developmental outcomes. However, the patient population benefiting most from early KD tends to start the treatment later, urging a re-evaluation of KD decision-making paradigms.
Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria , Humanos , Dieta Cetogénica/métodos , Masculino , Femenino , Preescolar , Niño , Epilepsia Refractaria/dietoterapia , Epilepsia Refractaria/genética , Resultado del Tratamiento , Convulsiones/dietoterapia , Convulsiones/genética , Lactante , Anticonvulsivantes/uso terapéutico , Adolescente , Desempeño Psicomotor/fisiologíaRESUMEN
BACKGROUND: Growing evidence suggests that elective induction of labor at 39 weeks' gestation may lead to more favorable perinatal outcomes than expectant management, however, how to weigh the pros and cons of elective labor induction at 39 weeks, the expectation of spontaneous delivery at 40 or 41 weeks, or delayed labor induction at 40 or 41 weeks on neonatal and maternal outcomes remains a practical challenge in clinical decision-making. OBJECTIVE: We compared the neonatal and maternal outcomes between elective induction of labor at 39 weeks' gestation and expectant management in a real-world setting. We also divided the expectantly managed group and compared outcomes of the spontaneous delivery at 40 or 41 weeks' gestation group and the induced group at 40 or 41 weeks' gestation with those of the elective induction at 39 weeks' gestation group. STUDY DESIGN: This retrospective cohort study included 21,282 participants who delivered between January 1, 2019, and June 30, 2022. Participants were initially categorized into 3 groups at 39 weeks' gestation, namely elective induction of labor, spontaneous delivery, and expectant management, for the primary analysis in which elective induction was compared with expectant management. Subsequently, the expectant management group at 39 weeks' gestation was divided into 3 groups at 40 weeks, and participants who underwent expectant management at 40 weeks were then divided into 2 groups at 41 weeks' gestation, namely elective induction and spontaneous delivery. In total, 6 groups were compared in the secondary analysis with the elective induction at 39 weeks' gestation group serving as the reference group. RESULTS: At 39 weeks' gestational age, participants who underwent elective induction of labor had a significantly lower risk for the primary composite outcomes than participants who were managed expectantly (adjusted odds ratio, 0.72; 95% confidence interval, 0.55-0.95), and there was no significant difference in the risk for cesarean delivery between the 2 groups. After further dividing the expectantly managed group and comparing them with participants who underwent elective induction of labor at 39 weeks' gestation, those who underwent spontaneous delivery at 40 weeks' gestation had significantly lower risks for cesarean delivery (0.61; 0.52-0.71) and chorioamnionitis (0.78; 0.61-1.00) but a higher risk for fetal distress (1.39; 1.22-1.57); those with spontaneous delivery at 41 weeks' gestation had a significantly higher risk for fetal distress (1.44; 1.16-1.79), postpartum hemorrhage (1.83; 1.26-2.66), and prolonged or arrested labor (1.61; 1.02-2.54). Moreover, when compared with participants who underwent elective induction of labor at 39 weeks' gestation, participants who were induced later in gestation had significantly higher risks for adverse neonatal and maternal outcomes, especially at 40 weeks' gestation. CONCLUSION: Our findings indicate that elective induction of labor at 39 weeks' gestation was significantly associated with lower risks for adverse short-term neonatal and maternal outcomes when compared with expectant management. Moreover, our study highlights the nuanced trade-offs in risks and benefits between elective induction at 39 weeks' gestation and waiting for spontaneous labor or delayed induction at 40 or 41 weeks' gestation, thus providing valuable insights for clinical decision-making in practice.
Asunto(s)
Edad Gestacional , Trabajo de Parto Inducido , Espera Vigilante , Humanos , Trabajo de Parto Inducido/métodos , Trabajo de Parto Inducido/estadística & datos numéricos , Embarazo , Femenino , Adulto , China/epidemiología , Estudios Retrospectivos , Recién Nacido , Espera Vigilante/métodos , Espera Vigilante/estadística & datos numéricos , Factores de Tiempo , Cesárea/estadística & datos numéricos , Resultado del Embarazo/epidemiología , Parto Obstétrico/métodos , Parto Obstétrico/estadística & datos numéricosRESUMEN
Background: The interactions between fibroblasts and bronchial epithelial cells play important roles in the development of chronic obstructive pulmonary disease (COPD). Interleukin (IL)-17A triggers the activation of fibroblasts and the secretion of inflammatory mediators, which promotes epithelial-mesenchymal transition (EMT) in bronchial epithelial cells. Fibroblasts secrete C-X-C motif chemokine ligand 12 (CXCL12), which specifically binds to its receptor, C-X-C motif chemokine receptor 4 (CXCR4) to mediate inflammatory responses. This study aims to investigate IL-17A- and CXCL12-induced airway remodeling. Methods: Primary lung fibroblasts were isolated from human and murine lung tissue for the in vitro experiments, and a mouse model of cigarette smoke (CS)-induced COPD was established for the in vivo experiments. The results were analyzed using a one-way analysis of variance and Tukey's test or Bonferroni's test for the post-hoc test. A p-value < 0.05 was considered statistically significant. Results: Through in vitro experiments, we found that IL-17A-activated primary lung fibroblasts secreted CXCL12 and stimulated EMT in bronchial epithelial cells. However, these effects could be blocked by neutralizing IL-17A or CXCL12. In vivo, an anti-IL-17A antibody or a CXCR4 antagonist could reverse the degree of EMT in the lungs of the COPD mouse model. The IL-17A-induced EMT and increased CXCL12 expression occurred via extracellular signal-regulated kinase (ERK)/phosphorylated-ERK pathways. Conclusion: This study showed that exposure of mice to CS and IL-17A stimulation upregulated CXCL12 expression and induced EMT by activating the ERK signaling pathway. These data offer a novel perspective regarding the molecular mechanism of CXCL12/CXCR4 signaling in IL-17A-induced EMT related to airway remodeling.
RESUMEN
Introduction: Blumea balsamifera L. (Ainaxiang) DC. is a perennial herb of the compositae family. It is also the primary source of natural borneol. Endo-borneol, the principal medical active element in B. balsamifera, is anti-inflammatory, antioxidant, and analgesic; enhances medicine absorption; refreshes; and is used as a spice and in cosmetic. Industrialization of B. balsamifera is limited by its low L-borneol concentration. Thus, understanding the accumulation pattern of the secondary metabolite endo-borneol and its synthesis process in secondary metabolism is critical for increasing B. balsamifera active ingredient content and cultivation efficiency. Methods: In this work, B. balsamifera was treated with varying concentrations (1.00 and 10.00 mmol/L) of methyl jasmonate (MeJA) as an exogenous foliar activator. The physiological parameters and L-borneol concentration were then assessed. Transcriptome sequencing of B. balsamifera-induced leaves was used to identify key genes for monoterpene synthesis. Results: The treatment effect of 1 mmol/L MeJA was the best, and the leaves of all three leaf positions accumulated the highest L-borneol after 120 h, correspondingly 3.043 mg·g-1 FW, 3.346 mg·g-1 FW, and 2.044 mg·g-1 FW, with significant differences from the control. The main assembly produced 509,285 transcripts with min and max lengths of 201 and 23,172, respectively. DEG analysis employing volcano blots revealed 593, 224, 612, 2,405, 1,353, and 921 upregulated genes and 4, 123, 573, 1,745, 766, and 763 downregulated genes in the treatments D1_1vsCK, D1_10vsCK, D2_1vsCK, D2_10vsCK, D5_1vsCK, and D5_10vsCK. Interestingly, when exposed to MeJA treatments, the MEP pathway's unigenes express themselves more than those of the MVA route. Finally, when treated with 1 mmol/L, the genes DXR, DXS, and GPS showed increased expression over time. At the same time, a 10 mmol/L therapy resulted in elevated levels of ispH and GGPS. Discussion: Our preliminary research indicates that exogenous phytohormones can raise the level of L borneol in B. balsamifera (L.) DC when given in the appropriate amounts. The most significant discovery made while analyzing the effects of different hormones and concentrations on B. balsamifera (L.) DC was the effect of 1 mmol/L MeJA treatment.
RESUMEN
The Alpinia oxyphylla fruit (AOF) is a popular condiment and traditional Chinese medicine in Asia, known for its neuroprotective compound nootkatone. However, there has not been a comprehensive study of its flavor or the relationship between sensory and bioactive compounds. To address this issue, we examined AOF's microstructure, flavor, and metabolomic profiles during fruit maturation. The key markers used to distinguish samples included fruit expansion, testa pigmentation, aril liquefaction, oil cell expansion, peel spiciness, aril sweetness, and seed bitterness. A full-spectrum metabolomic analysis, combining a nontargeted metabolomics approach for volatile compounds and a widely targeted metabolomics approach for nonvolatile compounds, identified 1,448 metabolites, including 1,410 differentially accumulated metabolites (DAMs). Notably, 31 DAMs, including nootkatone, were associated with spicy peel, sweet aril, and bitter seeds. Correlational analysis indicated that bitterness intensity is an easy-to-use biomarker for nootkatone content in seeds. KEGG enrichment analysis linked peel spiciness to phenylpropanoid and capsaicin biosynthesis, seed bitterness to terpenoid (especially nootkatone) biosynthesis, and aril sweetness to starch and sucrose metabolism. This investigation advances the understanding of AOF's complex flavor chemistry and underlying bioactive principle, encapsulating the essence of the adage: "no bitterness, no intelligence" within the realm of phytochemistry.
Asunto(s)
Alpinia , Frutas , Sesquiterpenos Policíclicos , Semillas , Gusto , Alpinia/química , Semillas/química , Sesquiterpenos Policíclicos/metabolismo , Frutas/química , Metabolómica , Metaboloma , Análisis Espacio-Temporal , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
A precise constitutive model is essential for capturing the deformation characteristics of the GH4169 superalloy in numerical simulations of thermal plastic forming processes. Hence, the aim of this study was to develop a precise modified constitutive model to describe the hot deformation behavior exhibited by the GH4169 superalloy. The isothermal cylindrical uniaxial compression tests of the GH4169 superalloy were carried out at temperatures of 950~1100 °C and strain rates of 0.01~10 s-1 using a Thermecmastor-200KN thermal-mechanical simulator. The original strain-stress curves were corrected by minimizing the effects of plastic heat and interfacial friction. Based on the true stress-strain curves, the original strain-compensated Arrhenius constitutive model was constructed using polynomial orders of 3, 5, and 10, respectively. The results showed that once the polynomial order exceeds the 5th, further increasing the order has little contribution to the accuracy of the model. To improve prediction ability, a higher precision Arrhenius constitutive model was established by extending a series of material parameters as functions that depend on temperature, strain, and strain rate, in which the error can be reduced from 4.767% to 0.901% compared with the classic strain-compensated Arrhenius constitutive model.
RESUMEN
There is a growing trend of applying traditional Chinese medicine (TCM) to treat immune diseases. This study reveals the possible mechanism of luteolin, an active ingredient in the core prescription of TCM, in alleviating systemic sclerosis (SSc) inflammation. Bibliometrics was performed to retrieve the core keywords of SSc inflammation. The key inflammatory indicators in the serum samples of 50 SSc patients were detected by ELISA. Data mining was applied for correlation analysis, association rule analysis, and binary logistic regression analysis on the clinical indicators and medication of 50 SSc patients before and after treatment to determine the core prescription. Network pharmacology was used for identifying candidate genes and pathways; molecular docking was conducted to determine the core monomer components of the prescription, providing a basis for subsequent in vitro molecular mechanism research. The effect of luteolin on SSc-human dermal fibroblasts (HDF) viability and inflammatory factors was evaluated by means of ELISA, RT-PCR, and Western blot. The role of TNF in inflammation was explored by using a TNF overexpression vector, NF-κB inhibitor (PKM2), and SSc-HDF. The involvement of TNF/NF-κB pathway was validated by RT-PCR, Western blot, and immunofluorescence. TCM treatment partially corrected the inflammatory changes in SSc patients, indicating its anti-inflammatory effects in the body. Atractylodes, Yam, Astragalus root, Poria cocos, Pinellia ternata, Salvia miltiorrhiza, Safflower, Cassia twig, and Angelica were identified as the core prescriptions for improving inflammatory indicators. Luteolin was the main active ingredient in the prescription and showed a strong binding energy with TNF and NF-κB. Luteolin exerted anti-inflammatory effects in vitro by reducing inflammatory cytokines in SSc-HDF and inhibiting the activation of TNF/NF-κB. Mechanistically, luteolin inhibited the activation of the TNF/NF-κB pathway in SSc-HDF, as manifested by an increase in extranuclear p-P65 and TNF but a decrease in intranuclear p-P65. Interestingly, the addition of PKM2 augmented the therapeutic function of luteolin against inflammation in SSc-HDF. Our study showed the TCM alleviates the inflammatory response of SSc by inhibiting the activation of the TNF/NF-κB pathway and is an effective therapeutic agent for the treatment of SSc.
Asunto(s)
Antiinflamatorios , Fibroblastos , Luteolina , FN-kappa B , Esclerodermia Sistémica , Humanos , Luteolina/farmacología , Luteolina/uso terapéutico , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/inmunología , FN-kappa B/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Femenino , Masculino , Biología de Sistemas , Persona de Mediana Edad , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Simulación del Acoplamiento Molecular , Adulto , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Medicina Tradicional China , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
Objective: Jianpi Qingre Tongluo Recipe (JQP) has been widely used in clinical practice, and its anti-Osteoarthritis (OA) effectiveness and specific mechanism have been concerned. This study aims to explore the clinical effect of JQP in reducing inflammation and dyslipidemia in OA and the molecular mechanism. Methods: The clinical efficacy of JQP in OA treatment was assessed through data mining. Through the network pharmacology technology, the interactive network of "active component-target-disease" was developed, the interaction relationship of the related proteins was analyzed, and enrichment analysis of gene pathway biological process was conducted. Molecular docking was carried out with PyMOL and AutodockTools-1.5.7. Finally, cell experiments were used to verify JQP's delay of immune inflammation in OA. Results: We found that JQP could ameliorate the immune inflammatory and lipid metabolism indicators; reduce VAS and SAS score in OA. A total of 98 genes overlapped between target genes of JQP and OA. TNF, IL-6, IL-1ß, and AKT1 shared the highest centrality among all target genes. KEGG analysis unveiled that 98 intersection genes were predominantly enriched in PI3K/AKT pathway in the anti-OA system. In vitro, after peripheral blood mononuclear cell (PBMC) stimulation, inflammatory cytokines imbalances and the expressions of adiponectin (APN) were decreased in osteoarthritis-chondrocytes (OA-CH). Furthermore, JQP-containing serum protected OA-CHs through down-regulating HOTAIR levels, thereby up-regulating APN and depressing PI3K/AKT pathway. Conclusion: This study suggests that JQP might reduce inflammation and improve lipid metabolism of OA by regulating HOTAIR/APN/PI3K/AKT. Our results bring a new solution for OA.
RESUMEN
Purpose: This study aims to determine whether Jianpi Qingre Tongluo Decoction (JQP) alleviates ankylosing spondylitis (AS) inflammation via the NONHSAT227927.1/JAK2/STAT3 axis. Methods: The effect of JQP on immune-inflammatory indicators in AS patients was explored through a combination of data mining, association rule analysis, and random walk model evaluation. Subsequently, network pharmacology and molecular docking were performed to screen out the potential signaling pathway. ELISA, PCR and wb were used to evaluate the effect of JQP on AS-FLS activity and inflammatory factors. The role of NONHSAT227927.1/JAK2/STAT3 combination in inflammation was studied by editing NONHSAT227927.1 and adding the JAK2/STAT3 inhibitor AG490. Involvement of the JAK2/STAT3 pathway was detected by PCR, WB, or immunofluorescence analysis. Results: Retrospective data mining results show that JQP can effectively reduce the immune inflammatory response in AS patients. Through network pharmacology and molecular docking, it is speculated that JQP exerts its effect on AS through the JAK2/STAT3 pathway. Overexpression of NONHSAT227927.1 activated the JAK2/STAT3 pathway and promoted the expression of inflammatory factors, while serum containing JQP reversed the effects of NONHSAT227927.1 overexpression. NONHSAT227927.1 silencing inhibits the proliferation of AS-FLSs, inhibits the levels of inflammatory factors, and reduces the expression of JAK2/STAT3 protein. After adding the pathway blocker AG490, it was observed that the cell viability of AS-FLSs was reduced by inflammatory factors and the levels of JAK2/STAT3 were inhibited. , and overexpression of NONHSAT227927.1 can reverse this trend. Conclusions: JQP exerted an anti-inflammatory effect on AS by inhibiting the NONHSAT227927.1/JAK2/STAT3 axis.
RESUMEN
Purpose: To investigate the primary causes and clinical characteristics of cystic encephalomalacia (CE) in children. Methods: The clinical data of 50 children who were admitted to our hospital due to CE between January 2008 and December 2020 were retrospectively reviewed. Their primary causes, clinical manifestations and cranial magnetic resonance imaging features were analyzed. Results: Among all patients, 5 had prematurity, 19 had hypoxic-ischemic encephalopathy (HIE), 13 had intracranial infection, 14 had traumatic brain injury and hemorrhage, 4 had cerebral infarction, 2 had congenital genetic diseases, and 1 had hypoglycemia. The average time from primary disease onset to CE diagnosis was 70.1 ± 61.0 days. The clinical manifestations included speech or motor developmental delay (n = 33), epilepsy (n = 31), dystonia (n = 27), limb paralysis (n = 16), and visual or auditory impairment (n = 5). Patients with HIE as the primary cause of CE had a significantly higher occurrence of dystonia, while a significantly higher incidence of paralysis was observed in those with cerebral infarction as the primary cause. Conclusion: CE in children is mainly caused by HIE, intracranial infection, and cerebral hemorrhage. The major clinical manifestations included speech or motor developmental delay, epilepsy, and dystonia. Magnetic resonance imaging is an important tool for the diagnosis of CE.
RESUMEN
Background: Minocycline, a derivative of tetracycline, has anti-Helicobacter pylori (H. pylori) properties and can be used to treat H. pylori infection. However, only a few randomized controlled trials (RCTs) have investigated the efficacy of minocycline-containing quadruple therapy (MCQT) in treating H. pylori infection. This study aimed to determine the efficacy and safety of MCQT and investigate the factors influencing both aspects. Methods: This was a retrospective cohort study. Patients diagnosed with H. pylori infection between January 1, 2022, and July 31, 2023 at. The primary outcome was the eradication rate of H. pylori, and the secondary outcome was the number and type of adverse events. Results: A total of 828 patients were included in this study. The overall H. pylori eradication rate among the included patients at 95% confidence interval (CI) (Range 0.864 to 0.907) was 88.53%. The H. pylori eradication rate for patients who received MCQT regimen as the primary therapy was 92.28% (95% CI: 0.901-0.945), significantly higher than that of patients who received MCQT as rescue therapy (80.81%; 95% CI: 0.761-0.855, P=0.003). Adverse events, including dizziness, abdominal distension, diarrhea, nausea, abdominal discomfort, constipation, headache, rash, sleep disorder, palpitation, backache, and anorexia, occurred in 185 (22.34%) patients, with dizziness being the most common (75/828, 9.06%). Compliance with MCQT therapy was an independent factor influencing H. pylori eradication in patients receiving MCQT as a primary therapy. Compliance and presence or absence of H. pylori infection symptoms at the time of screening were independent factors influencing H. Pylori eradication in patients receiving MCQT as rescue therapy. Factors that influenced the occurrence of adverse events included reasons for H. pylori infection screening, residence, treatment compliance, and the use of acid-suppressant regimens. Conclusion: MCQT regimens were effective in H. pylori infection eradication, and the treatment resulted only in fewer adverse events when used as primary or rescue therapies for H. pylori infection treatment. Future prospective studies with larger sample sizes and more comprehensive data are needed to validate our findings.
RESUMEN
Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.
Asunto(s)
Arsénico , Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Estrés Oxidativo , Proteómica , Ratas Sprague-Dawley , Animales , Proteómica/métodos , Arsénico/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ratas , Estrés Oxidativo/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Polisacáridos/farmacología , Apoptosis/efectos de los fármacosRESUMEN
OBJECTIVE: To explore the efficacy and potential mechanism of Fengshi Gutong capsule (FSGTC) in osteoarthritis (OA) inflammation. METHODS: The impact of FSGTC on laboratory indicators of OA patients was explored using data mining technology and association rule analysis. Then, the OA cell model was constructed by inducing chondrocytes (CHs) with interleukin-1ß (IL-1ß). In the presence of FSGTC intervention, the regulatory mechanism of PACER/COX2/PGE2 in OA-CH viability and inflammatory responses was evaluated. RESULTS: Retrospective data mining showed that FSGTC effectively reduced inflammation indexes (ESR, HCRP) of OA patients. Cell experiments showed that LncRNA PACER (PACER) silencing inhibited the proliferation activity of OA-CHs, increased the level of COX2 protein, elevated the levels of PGE2, TNF-α, and IL-1ß, and decreased the levels of IL-4 and IL-10 (p < .01). On the contrary, FSGTC-containing serum reversed the effect of PACER silencing on OA-CHs (p < .01). After the addition of COX2 pathway inhibitor, the proliferation activity of OA-CHs was enhanced; the levels of PGE2, TNF-α, and IL-1ß were decreased while the levels of IL-4 and IL-10 were increased (p < .01). CONCLUSION: FSGTC inhibits IL-1ß-induced inflammation in CHs and ameliorates OA by upregulating PACER and downregulating COX2/PGE2.
Asunto(s)
Condrocitos , Ciclooxigenasa 2 , Dinoprostona , Inflamación , Interleucina-1beta , Osteoartritis , ARN Largo no Codificante , Condrocitos/metabolismo , Condrocitos/patología , ARN Largo no Codificante/genética , Humanos , Interleucina-1beta/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Inflamación/metabolismo , Inflamación/genética , Medicamentos Herbarios Chinos/farmacología , Regulación hacia Abajo , Masculino , Femenino , Regulación hacia Arriba , Persona de Mediana EdadRESUMEN
Stopping postoperative soft tissue adhesions is one of the most challenging clinical problems that needs to be addressed urgently to avoid secondary injury and pain to patients. Currently, membrane materials with anti-protein adsorption and antibacterial activity are recognized as an effective and promising anti-adhesion barrier to prevent postoperative adhesion and the recurrent adhesion after adhesiolysis. Herein, poly(amino acid) (PAA), which is structurally similar to collagen, is selected as the membrane base material to successfully synthesize PAA-5 membranes with excellent mechanical and degradation properties by in-situ melt polymerization and hot-melt film-forming technology. Subsequently, the co-deposition of polydopamine/polysulfobetaine methacrylate (PDA/PSBMA) coatings induced by CuSO4/H2O2on PAA-5 membranes results in the formation of PDC-5S and PDC-10S, which exhibit excellent hemocompatibility, protein antifouling properties, and cytocompatibility. Additionally, PDC-5S and PDC-10S demonstrated significant antibacterial activity againstEscherichia coliandStaphylococcus aureus, with an inhibition rate of more than 90%. As a result, this study sheds light on newly discovered PAA membranes with anti-protein adsorption and antibacterial activity can sever as one of the promising candidates for the prevention of postoperative peritoneum adhesions.
Asunto(s)
Antibacterianos , Escherichia coli , Peróxido de Hidrógeno , Indoles , Membranas Artificiales , Metacrilatos , Polímeros , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Polímeros/química , Adsorción , Indoles/química , Indoles/farmacología , Metacrilatos/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/química , Animales , Ensayo de Materiales , Aminoácidos/química , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Betaína/química , Betaína/análogos & derivados , Adherencias Tisulares/prevención & controlRESUMEN
BACKGROUND: Achieving universal health coverage (UHC) involves all individuals attaining accessible health interventions at an affordable cost. We examined current patterns and temporal trends of cancer mortality and UHC across sociodemographic index (SDI) settings, and quantified these association. METHODS: We used data from the Global Burden of Disease Study 2019 and Our World in Data. The UHC effective coverage index was obtained to assess the potential population health gains delivered by health systems. The estimated annual percentage change (EAPC) with a 95% confidence interval (CI) was calculated to quantify the trend of cancer age-standardized mortality rate (ASMR). A generalized linear model was applied to estimate the association between ASMR and UHC. FINDINGS: The high (EAPC = -0.9% [95% CI, -1.0%, -0.9%]) and high-middle (-0.9% [-1.0%, -0.8%]) SDI regions had the fastest decline in ASMR (per 100,000) for total cancers from 1990 to 2019. The overall UHC effective coverage index increased by 27.9% in the high-SDI quintile to 62.2% in the low-SDI quintile. A negative association was observed between ASMR for all-cancer (adjusted odds ratio [OR] = 0.87 [0.76, 0.99]), stomach (0.73 [0.56, 0.95]), breast (0.64 [0.52, 0.79]), cervical (0.42 [0.30, 0.60]), lip and oral cavity (0.55 [0.40, 0.75]), and nasopharynx (0.42 [0.26, 0.68]) cancers and high UHC level (the lowest as the reference). CONCLUSIONS: Our findings strengthen the evidence base for achieving UHC to improve cancer outcomes. FUNDING: This work is funded by the China National Natural Science Foundation and Chinese Academy of Medical Sciences Innovation Fund for Medical Science.