Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Can Respir J ; 2023: 4689004, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388902

RESUMEN

Background: Immune checkpoint inhibitors (ICIs) have become a standard care in non-small-cell lung cancer (NSCLC). However, its application to epidermal growth factor receptor (EGFR)-mutant NSCLC patients is confronted with drug resistance. This study aimed to clarify the potential role of Yes1-associated transcriptional regulator (YAP1) in ICIs treatment for EGFR-mutant NSCLC population. Methods: All the clinical data of NSCLC were downloaded from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) for GSE11969 and GSE72094. Based on YAP1 expression, all the NSCLC patients including the EGFR-mutant and EGFR-wildtype (WT) patients were divided into two groups, YAP1_High and YAP1_Low. Using cBioPortal, genetic alterations were analyzed for identification of immunogenicity in EGFR-mutant NSCLC. MR analysis was used to analyze the hub gene of EGFR. The infiltration of immune cells and the expression of the identified tumor-associated antigens were identified with TIMER. By graph learning-based dimensionality reduction analysis, the immune landscape was visualized. Moreover, survival analysis was performed to verify the predictive value of YAP1 in ICIs treatment for EGFR-mutant NSCLC population using Ren's research data (NCT03513666). Results: YAP1 was a poor prognostic factor of EGFR-mutant NSCLC population rather than lung adenocarcinoma (LUAD) patients. MR analysis revealed that the EGFR gene regulated YAP1 expression. YAP1 was identified as a hub gene closely associated with immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population in TCGA LUAD. Tumors with YAP1_High showed an immune-"cold" and immunosuppressive phenotype, whereas those with YAP1_Low demonstrated an immune-"hot" and immunoactive phenotype. More importantly, it was verified that YAP1_High subpopulation had a significantly shorter progression-free survival (PFS) and overall survival (OS) after ICIs treatment in EGFR-mutant NSCLC patients in the clinical trial. Conclusions: YAP1 mediates immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population. YAP1 is a novel negative biomarker of ICIs treatment in EGFR-mutant NSCLC population. Clinical Trials. This trial is registered with NCT03513666.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Genes erbB-1 , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Biomarcadores , Inmunosupresores , Microambiente Tumoral
2.
Ther Adv Med Oncol ; 15: 17588359231163807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113734

RESUMEN

Immune checkpoint inhibitors (ICIs) have revealed significant clinical values in different solid tumors and hematological malignancy, changing the landscape for the treatment of multiple types of cancer. However, only a subpopulation of patients has obvious tumor response and long-term survival after ICIs treatment, and many patients may experience other undesirable clinical features. Therefore, biomarkers are critical for patients to choose exact optimum therapy. Here, we reviewed existing preclinical and clinical biomarkers of immunotherapeutic efficacy and immune-related adverse events (irAEs). Based on efficacy prediction, pseudoprogression, hyperprogressive disease, or irAEs, these biomarkers were divided into cancer cell-derived biomarkers, tumor microenvironment-derived biomarkers, host-derived biomarkers, peripheral blood biomarkers, and multi-modal model and artificial intelligence assessment-based biomarkers. Furthermore, we describe the relation between ICIs efficacy and irAEs. This review provides the overall perspective of biomarkers of immunotherapeutic outcome and irAEs prediction during ICIs treatment.

3.
Front Oncol ; 11: 697227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568026

RESUMEN

The resistance to radiotherapy in lung cancer can be attributed to vasculogenic mimicry (VM) to some extent. Celecoxib (CXB), a selective inhibitor of cyclooxygenase-2 (COX-2), is reported as a radiosensitizer in non-small cell lung cancer (NSCLC). However, whether CXB can regulate VM formation via an off-target effect to radiosensitize NSCLC remains unclear. This study aimed to elucidate the mechanism underlying the radiosensitizing effect of CXB on NSCLC, i.e., whether CXB can inhibit VM formation via binding to newly identified targets other than COX-2. CXB radiosensitivity assay was performed in BALB/c mice bearing H460 xenografts and C57 mice bearing Lewis lung cancer (LLC) xenografts, which were divided into the control, CXB, irradiation (IR) treatment, and IR plus CXB groups. VM formation was observed using 3D Matrigel, periodic acid solution (PAS) staining, and immunofluorescence staining. The potential off-targets of CXB were screened using Protein Data Bank (PDB) database, MGLTools 1.5.6, and AutoDock Vina 1.1.2 and confirmed by Western blotting, enzyme activity assay, and RNA interference in vitro experiments and by immunohistochemistry in vivo experiments. CXB treatment almost eliminated the enhancement of VM formation by IR in vitro and in vivo, partially due to COX-2 inhibition. Four potential off-targets were predicted by molecular docking. Among them, aminopeptidase N (APN) and integrin alpha-V (ITAV) were remarkably inhibited in protein expression and enzyme activity in vitro or in vivo, consistent with the remarkable reduction of VM formation in H460 xenografts in BALB/c mice. In conclusion, CXB dramatically blocked VM through inhibiting newly identified off-targets APN and ITAV, other than COX-2, then radiosensitizing NSCLC.

4.
Oncol Lett ; 15(4): 5634-5642, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29556300

RESUMEN

The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring.

5.
Oncol Lett ; 14(1): 615-622, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28693213

RESUMEN

A series of antibodies against vascular endothelial growth factor (VEGF) have been developed for the treatment of various types of cancer, including non-small cell lung cancer (NSCLC) in recent years. However, tumors frequently demonstrate resistance to these strategies of VEGF inhibition. Efforts to better understand the mechanism underlying the acquired resistance to anti-VEGF antibodies are warranted. In the present study, in order to develop a xenograft model of acquired resistance to anti-VEGF antibody, xenografts of human adenocarcinoma A549 cells were generated through the successive inoculation of tumor tissue explants into first (F1), second (F2) and third (F3) generations of mice treated with the anti-VEGF antibody B20. Tumor growth rate and vessel-forming ability, assessed via cluster of differentiation (CD) 31 staining, were significantly lower in the F1, F2 and F3 groups compared with in the F0 control group (P<0.01), suggesting that drug resistance was not successfully acquired. The percentages of CD11b+ myeloid-derived suppressor cells and lymphocyte antigen 6C (Ly6C)+ subsets were significantly smaller in F1, F2 and F3 groups compared with in F0 (P<0.01). However, the ratio of Ly6C+ to CD11b+ cells was significantly higher in the F3 group compared with in F0 and F1 groups (P<0.01), indicating increasing recruitment of the Ly6C+ subset with successive challenges with the anti-VEGF antibody. In conclusion, the recruitment of CD11b+Ly6C+ monocytes increased with successive generations of NSCLC-xenografted mice challenged by B20, an anti-VEGF agent.

6.
Int J Mol Med ; 38(1): 183-91, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27177336

RESUMEN

Lung cancer is the leading cause of cancer-related fatalities worldwide, and non-small cell lung cancer (NSCLC) is the main pathological type. MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs, which are involved in tumor initiation and progression. miR­223 is a tumor suppressor miRNA that has been reported in various types of cancer, including lung cancer. In the present study, to characterize the biological behavior of miR­223 in NSCLC, we established an miR­223 overexpression model in erlotinib-resistant PC­9 (PC­9/ER) cells by infection with lentivirus to induce the overexpression of miR­223. As a result, miR­223 enhanced the sensitivity of the PC­9/ER cells to erlotinib by inducing apoptosis in vitro. Additionally, in vivo experiments were performed using nude mice which were injected with the cancer cells [either the PC­9 (not resistant), PC­9/ER, or the PC­9/ER cells infected with miR­223)]. We found that the tumor volumes were reduced in the rats injected with the cells infected with miR­223. To further explore the underlying mechanisms, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were used to identify the target molecules of miR­223. miR­223 was demonstrated to act as a local regulator of insulin-like growth factor-1 receptor (IGF-1R) in the acquired resistance to tyrosine kinase inhibitors (TKIs). Notably, the οverexpression of IGF-1R in NSCLC was downregulated by miR­223, and the activation of Akt/S6, the downstream pathway, was also inhibited. The inhibition of IGF-1R by miR­223 was attenuated by exogenous IGF-1 expression. Therefore, miR­223 may regulate the acquired resistance of PC­9/ER cells to erlotinib by targeting the IGF-1R/Akt/S6 signaling pathway. The overexpression of miR­223 may partially reverse the acquired resistance to epidermal growth factor receptor-TKIs, thus, providing a potential therapeutic strategy for TKI-resistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Clorhidrato de Erlotinib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , MicroARNs/metabolismo , Receptor IGF Tipo 1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorhidrato de Erlotinib/farmacología , Humanos , Factor I del Crecimiento Similar a la Insulina/farmacología , Lentivirus/metabolismo , Masculino , Ratones Desnudos , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Int J Mol Med ; 37(5): 1254-62, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26986900

RESUMEN

Endothelial progenitor cells (EPCs) play a key role in repairing the injured vascular endothelium by differentiating into mature endothelial cells (ECs) or secreting cytokines in a paracrine manner to promote proliferation of existing ECs. However, the mechanisms underlying the proliferation of EPCs were not fully understood. In order to investigate the mechanisms of EPC proliferation, we isolated EPCs from mononuclear cells of mouse spleens. By manipulating E2-2 expression in vitro, we observed that E2-2 negatively regulated the proliferation of EPCs. Moreover, we noted that E2-2 negatively regulated the autophagy of EPCs by studying the expression of LC3II and p62. We also demonstrated that an autophagy inhibitor chloroquine (CQ) decreased the proliferation of EPCs in a concentration-dependent manner. Interestingly, CQ reversed the increase in cell proliferation and autophagy in the E2-2 knockdown group. Furthermore, we detected the expression of autophagy­related protein ATG7 in EPCs which had been transfected with small interfering (siRNA)­E2-2 and siRNA­autophagy related 7 (ATG7) or were untransfected. Our study revealed that E2-2 regulated EPC autophagy via mediating ATG7 expression. We conclude that E2-2 inhibited EPC proliferation via suppressing their autophagy, and E2-2 regulated EPC autophagy by mediating the expression of ATG7.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Progenitoras Endoteliales/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proliferación Celular , Células Progenitoras Endoteliales/citología , Regulación de la Expresión Génica , Masculino , Ratones , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción 4
8.
Oncotarget ; 7(9): 9692-706, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26695440

RESUMEN

Tumor initiating cells (TICs) serve as the root of tumor growth. After identifying TICs in spontaneous breast tumors of the MMTV-Wnt1 mouse model, we confirmed the specific expression and activation of Yes-associated protein 1 (Yap1) within TICs. To investigate the role of Yap1 in the self-renewal of breast TICs and the underlying mechanism, we sorted CD49fhighEpCAMlow cells as breast TICs. Active Yap1 with ectopic expression in breast TICs promoted their colony formation in vitro (p< 0.01) and self-renewal in vivo (p< 0.01), and led to a 4-fold increase in TIC frequency (p< 0.05).A conditional knock-out mouse was reconstructed to generate Yap1 knock-out breast tumors. The loss of Yap1 led to a dramatic growth disadvantage of breast TICs in vitro (p< 0.01) and in vivo (p< 0.01), and it also led to an over 200-fold decrease in TIC frequency (p< 0.01). The expression of active Yap1 was negatively correlated with that of phosphorylated Smad3 (p-Smad3).Transforming growth factor ß (TGF-ß) served as a strong enhancer of Smad3 and an inhibitor of clonogenesis of TICs. The presence of SIS3, a specific inhibitor of Smad3, could rescue the TGF-ß -induced growth inhibition and reverse the Smad3 inhibition by Yap1. Analysis of a database containing 2,072 human breast cancer samples showed that higher expressions of Yap1 correlated with a poorer outcome of a 15-year survival rate and median overall survival (mOS)in patients, especially in those with basal breast tumors without estrogen receptor 1 (ER) expression. The findings indicate that active Yap1 promotes the self-renewal of breast TICs by inhibiting Smad3 signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/biosíntesis , Neoplasias Mamarias Experimentales/patología , Células Madre Neoplásicas/patología , Fosfoproteínas/metabolismo , Proteína smad3/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/mortalidad , Proteínas de Ciclo Celular , Femenino , Humanos , Isoquinolinas/farmacología , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Fosforilación , Piridinas/farmacología , Pirroles/farmacología , Proteína smad3/metabolismo , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Proteína Wnt1/genética , Proteínas Señalizadoras YAP
9.
BMC Cancer ; 15: 645, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400441

RESUMEN

BACKGROUND: Breast cancer stem cells (BCSCs) have been reported as the origin of breast cancer and the radical cause of drug resistance, relapse and metastasis in breast cancer. BCSCs could be derived from mutated mammary epithelial stem cells (MaSCs). Therefore, comparing the molecular differences between BCSCs and MaSCs may clarify the mechanism underlying breast carcinogenesis and the targets for gene therapy. Specifically, the distinct miRNome data of BCSCs and MaSCs need to be analyzed to find out the key miRNAs and reveal their roles in regulating the stemness of BCSCs. METHODS: MUC1(-)ESA(+) cells were isolated from normal mammary epithelial cell line MCF-10A by fluorescence-activated cell sorting (FACS) and tested for stemness by clonogenic assay and multi-potential differentiation experiments. The miRNA profiles of MaSCs, BCSCs and breast cancer MCF-7 cells were compared to obtain the candidate miRNAs that may regulate breast tumorigenesis. An miRNA consecutively upregulated from MaSCs to BCSCs to MCF-7 cells, miR-200c, was chosen to determine its role in regulating the stemness of BCSCs and MaSCs in vitro and in vivo. Based on bioinformatics, the targets of miR-200c were validated by dual-luciferase report system, western blot and rescue experiments. RESULTS: In a 2-D clonogenic assay, MUC1(-)ESA(+) cells gave rise to multiple morphological colonies, including luminal colonies, myoepithelial colonies and mixed colonies. The clonogenic potential of MUC1(-)ESA(+) (61.5 ± 3.87 %) was significantly higher than that of non-stem MCF-10A cells (53.5 ± 3.42 %) (P < 0.05). In a 3-D matrigel culture, MUC1(-)ESA(+) cells grew into mammospheres with duct-like structures. A total of 12 miRNAs of interest were identified, 8 of which were upregulated and 4 downregulated in BCSCs compared with MaSCs. In gain- and lost-of-function assays, miR-200c was sufficient to inhibit the self-renewal of BCSCs and MaSCs in vitro and the growth of BCSCs in vivo. Furthermore, miR-200c negatively regulated programmed cell death 10 (PDCD10) in BCSCs and MaSCs. PDCD10 could rescue the tumorigenesis inhibited by miR-200c in BCSCs. DISCUSSION: Accumulating evidence shows that there is a milignant transformation from MaSCs into BCSCs. The underlying mechanism remains unclear. In present study, miRNA profiles between MaSCs and BCSCs were obtained. Then miRNA-200c, downregulated in both MaSCs and BCSCs, were verified as anti-oncogene, and played essential role in regulating self-renewal of both kinds of stem-like cells. These findings reveal a novel insights of breast tumorigenesis. CONCLUSIONS: PDCD10 is a target gene of miR-200c and also a possible mechanism by which miR-200c plays a role in regulating the stemness of BCSCs and MaSCs.


Asunto(s)
Neoplasias de la Mama/genética , Autorrenovación de las Células/genética , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Células Madre Neoplásicas/patología , Interferencia de ARN , ARN Mensajero/genética , Reproducibilidad de los Resultados
10.
Biomed Res Int ; 2015: 851841, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25815339

RESUMEN

Radiotherapy (RT) is a key therapeutic strategy for lung cancer, the most common cause of cancer-related deaths worldwide, but radioresistance often occurs and leads to failure of RT. It is therefore important to clarify the mechanism underlying radioresistance in lung cancer. Cancer stem cells (CSCs) are considered the fundamental reason for radioresistance. MicroRNAs (miRNAs) have been regarded as important regulatory molecules of CSCs, carcinogenesis, and treatment response of cancers. It is crucial to clarify how regulation of miRNAs affects repair of DNA damage, redistribution, repopulation, reoxygenation, and radiosensitivity (5R) of lung cancer stem cells (LCSCs). A thorough understanding of the regulation of miRNAs affecting 5R of LCSCs has potential impact on identifying novel targets and thus may improve the efficacy of lung cancer radiotherapy.


Asunto(s)
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , MicroARNs/biosíntesis , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , Daño del ADN/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA