Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101465

RESUMEN

Interleukin-32 is a species-specific cytokine that plays an important role in inflammation, cancer, and other diseases; however, its role in reproductive and pregnancy-related diseases remains unknown. This study aimed to investigate the role of interleukin-32 in reproductive and pregnancy-related diseases. Placental tissues from patients with pregnancy-induced hypertension, healthy pregnant women, and trophoblast lines were analysed. Interleukin-32 expression was quantified via polymerase chain reaction and immunohistochemistry, and functional assays were performed after interleukin-32 modulation. Interleukin-32 was identified only in placental mammals, such as Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Lagomorpha, Perissodactyla, and Primates via bioinformatics. Immunohistochemistry and polymerase chain reaction revealed that interleukin-32 was highly expressed in human placental villi, poorly expressed in decidua and endometrial tissues, and was not detected in mouse tissues. Second, interleukin-32 upregulates miR-205 expression by increasing DROSHA expression, and miR-205 promotes interleukin-32 expression by targeting its promoter region. Interleukin-32 and miR-205 significantly enhanced the invasion ability of HTR8/SVneo cells (a trophoblast cell line) and the tube formation ability of human umbilical vein endothelial cells. Through quantitative reverse transcription polymerase chain reaction and western blotting, the interleukin-32/miR-205 loop increased MMP2 and MMP9 expression in HTR-8/SVneo cells via the nuclear factor kappa B signalling pathway. Finally, using quantitative reverse transcription polymerase chain reaction, interleukin-32 and miR-205 expression levels were significantly lower in the placentas of patients with pregnancy-induced hypertension than in women with normal pregnancies. In conclusion, interleukin-32 regulates trophoblast invasion through the miR-205-nuclear factor kappa B-MMP2/9 pathway, which is involved in pregnancy-induced hypertension.

2.
J Agric Food Chem ; 72(27): 15106-15121, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949086

RESUMEN

Some feed source plants will produce secondary metabolites such as cyanogenic glycosides during metabolism, which will produce some poisonous nitrile compounds after hydrolysis and remain in plant tissues. The consumption of feed-source plants without proper treatment affect the health of the animals' bodies. Nitrilases can convert nitriles and have been used in industry as green biocatalysts. However, due to their bottleneck problems, their application in agriculture is still facing challenges. Acid-resistant nitrilase preparations, high-temperature resistance, antiprotease activity, strong activity, and strict reaction specificity urgently need to be developed. In this paper, the application potential of nitrilase in agriculture, especially in feed processing industry was explored, the source properties and catalytic mechanism of nitrilase were reviewed, and modification strategies for nitrilase application in agriculture were proposed to provide references for future research and application of nitrilase in agricultural and especially in the biological feed scene.


Asunto(s)
Aminohidrolasas , Nitrilos , Aminohidrolasas/metabolismo , Aminohidrolasas/genética , Aminohidrolasas/química , Nitrilos/metabolismo , Nitrilos/química , Agricultura , Alimentación Animal/análisis , Biocatálisis , Animales
3.
Prep Biochem Biotechnol ; : 1-9, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824495

RESUMEN

Wheat straw contains a high amount of lignin, hindering the action of cellulase and hemicellulase enzymes, leading to difficulties in nutrient absorption by animals from straw feed. However, currently, the biological treatment of straw relies primarily on fungal degradation and cannot be directly utilized for the preparation of livestock feed. This study focuses on enzymatic co-fermentation of wheat straw to produce high-protein, low-cellulose biological feed, integrating lignin degradation with feed manufacturing, thereby simplifying the feed production process. After the optimization using Box-Behnken Design for the feed formulation, with a glucose oxidase addition of 2.46%, laccase addition of 3.4%, and malonic acid addition of 0.6%, the wheat straw feed prepared in this experiment exhibited a true protein content of 9.35%. This represented a fourfold increase compared to the non-fermented state, and the lignocellulose degradation rate of wheat straw reached 45.42%. These results not only highlight the substantial enhancement in protein content but also underscore the significant advancement in lignocellulose breakdown. This formulation significantly enhanced the palatability and nutritional value of the straw feed, contributing to the industrial development of straw feed.

4.
Reprod Sci ; 31(9): 2718-2730, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38637474

RESUMEN

In women of childbearing age, extensive decidualization, shedding and remodeling of the endometrium during the menstrual cycle are fundamental for successful pregnancy. The role of prostaglandins (PGs) in menstruation has long been proposed in humans, and the rate-limiting enzyme cyclooxygenase was shown to play a key role in endometrial breakdown and shedding in a mouse menstrual-like model in our previous study. However, the specific types of PGs involved and their respective roles remain unclear. Therefore, our objective was to investigate the mechanism through which PGs regulate endometrial disintegration. In this study, the microscopy was observed by HE; the protein levels of prostaglandins E1 (PGE1), prostaglandins E2 (PGE2), prostaglandin F2α (PGF2α) and Prostaglandin I2 (PGI2) were detected by ELISA; the mRNA level of Pfgfr2, Vascular Endothelial Growth Factor(Vegf), Angiostatin and Hypoxia inducible factor-1α (Hif1α) were examined by real-time PCR; PTGFR Receptor (PTGFR), VEGF, Angiostatin and HIF-1α protein levels were investigated by western blotting; the locations of protein were observed by Immunohistochemistry; HIF-1α binding PTGFR promoter was detected by Chromatin Immunoprecipitation (ChIP) and real-time PCR. We found that the concentrations of PGE1, PGE2, and PGF2α all increased significantly during this process. Furthermore, Ptgfr mRNA increased soon after Progesterone (P4) withdrawal, and PTGFR protein levels increased significantly during abundant endometrial breakdown and shedding processes. PTGFR inhibitors AL8810 significantly suppressed endometrial breakdown and shedding, promoted Angiostatin expression, and reduced VEGF-A expressions and vascular permeability. And HIF-1α and PTGFR were mainly located in the luminal/gland epithelium, vascular endothelium, and pre-decidual zone. Interestingly, HIF-1α directly bound to Ptgfr promoter. Moreover, a HIF-1α inhibitor 2-methoxyestradiol (2ME) significantly reduced PTGFR expression and suppressed endometrial breakdown which was in accord with PTGFR inhibitor's effect. Similar changes occurred in human stromal cells relevant to menstruation in vitro. Our study provides evidence that PGF2α/PTGFR plays a vital role in endometrial breakdown via vascular changes that are regulated by HIF-1α during menstruation.


Asunto(s)
Dinoprost , Endometrio , Subunidad alfa del Factor 1 Inducible por Hipoxia , Femenino , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Endometrio/metabolismo , Dinoprost/metabolismo , Dinoprost/análogos & derivados , Ratones , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Menstruación/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
5.
Bioact Mater ; 36: 96-111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440322

RESUMEN

Endometrial cancer (EC) stands as one of the most prevalent gynecological malignancies affecting women, with its incidence and disease-related mortality steadily on the rise. Disulfiram (DSF), an FDA-approved medication primarily used for treating alcohol addiction, has exhibited promising anti-tumor properties. Studies have revealed DSF's capacity for enhanced anti-tumor activity, particularly when combined with copper. The novel Copper-Cysteamine (CuCy) compound, Cu3Cl(SR)2 (R[bond, double bond]CH2CH2NH2), showcases photodynamic effects and demonstrates significant anti-tumor potential under various conditions, including exposure to ultraviolet light, X-ray, microwave, and ultrasound. This study delves into exploring the synergistic anti-tumor effects and underlying mechanisms by utilizing copper-cysteamine in conjunction with DSF against endometrial cancer. The investigation involved comprehensive analyses encompassing in vitro experiments utilizing Ishikawa cells, in vivo studies, and transcriptomic analyses. Remarkably, the combined administration of both compounds at a low dose of 0.5 µM exhibited pronounced efficacy in impeding tumor growth, inhibiting blood vessel formation, and stimulating cell apoptosis. Notably, experiments involving transplanted tumors in nude mice vividly demonstrated the significant in vivo anti-tumor effects of this combination treatment. Detailed examination through transmission electron microscopy unveiled compelling evidence of mitochondrial damage, cellular swelling, and rupture, indicative of apoptotic changes in morphology due to the combined treatment. Moreover, transcriptomic analysis unveiled substantial downregulation of mitochondrial-related genes at the molecular level, coupled with a significant hindrance in the DNA repair pathway. These findings strongly suggest that the combined application of CuCy and DSF induces mitochondrial impairment in Ishikawa cells, thereby fostering apoptosis and ultimately yielding potent anti-tumor effects.

6.
Protein Expr Purif ; 218: 106448, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373510

RESUMEN

Cellobiose dehydrogenase (CDH) plays a crucial role in lignocellulose degradation and bioelectrochemical industries, making it highly in demand. However, the production and purification of CDH through fungal heterologous expression methods is time-consuming, costly, and challenging. In this study, we successfully displayed Pycnoporus sanguineus CDH (psCDH) on the surface of Bacillus subtilis spores for the first time. Enzymatic characterization revealed that spore surface display enhanced the tolerance of psCDH to high temperature (80 °C) and low pH levels (3.5) compared to free psCDH. Furthermore, we found that glycerol, lactic acid, and malic acid promoted the activity of immobilized spore-displayed psCDH; glycerol has a more significant stimulating effect, increasing the activity from 16.86 ± 1.27 U/mL to 46.26 ± 3.25 U/mL. After four reuse cycles, the psCDH immobilized with spores retained 48% of its initial activity, demonstrating a substantial recovery rate. In conclusion, the spore display system, relying on cotG, enables the expression and immobilization of CDH while enhancing its resistance to adverse conditions. This system demonstrates efficient enzyme recovery and reuse. This approach provides a novel method and strategy for the immobilization and stability enhancement of CDH.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Deshidrogenasas de Carbohidratos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/química
7.
J Cosmet Dermatol ; 23(2): 470-478, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37878546

RESUMEN

BACKGROUND: Thermage is a monopolar radiofrequency (RF). It has become an indispensable part of facial and body youthful methods. Although the current device is constantly improving in epidermal cooling techniques and even automatically measures the local impedance value, applying surface anesthesia can take some of the pain away caused by thermage, and the patient's severe pain in the jaw and neck areas is still difficult to resolve. METHODS: The author describes how he uses the combination of the buccal nerve block (BNB) and the superficial cervical plexus block (SCPB) to improve the comfort of the patient's face and neck treatment of patients. It can improve the quality, elasticity, and texture of the skin. RESULTS: According to the author's knowledge of oral and maxillofacial surgery, the combination of BNB and SCPB is applied to the neck and facial analgesia. Combining the BNB and SCPB effectively provides facial and neck anesthesia. The BNB in this technique provides pain relief to the facial skin in the mandibular area and SCPB offers pain relief to the skin of the neck. RF facial rejuvenation treatment often involves the junction of the face and neck to improve the contour of the mandibular margin. Therefore, Whether the RF treatment is aimed at the face or neck, or the treatment is performed simultaneously, we advocate the block both of the buccal nerve and the superficial cervical plexus nerves to achieve perfect analgesia. Still, the dosage of anesthetic medication for the nerve block can be adjusted according to the treatment area. CONCLUSION: We applied these two nerve blocks and their combination to improve skin laxity with RF therapy for the first time.


Asunto(s)
Bloqueo del Plexo Cervical , Bloqueo Nervioso , Masculino , Humanos , Bloqueo del Plexo Cervical/métodos , Plexo Cervical , Bloqueo Nervioso/métodos , Dolor/etiología , Nervio Mandibular , Anestésicos Locales
8.
ACS Nano ; 17(24): 25185-25204, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38088330

RESUMEN

Effective contraceptives have been comprehensively adopted by women to prevent the negative consequences of unintended pregnancy for women, families, and societies. With great contributions of traditional hormonal drugs and intrauterine devices (IUDs) to effective female contraception by inhibiting ovulation and deactivating sperm, their long-standing side effects on hormonal homeostasis and reproductive organs for females remain concerns. Herein, we proposed a nanostrategy for female contraceptives, inducing embryonic trophoblast cell death using nanoparticles to prevent embryo implantation. Cupric oxide nanoparticles (CuO NPs) were adopted in this work to verify the feasibility of the nanostrategy and its contraceptive efficacy. We carried out the in vitro assessment on the interaction of CuO NPs with trophoblast cells using the HTR8/SVneo cell line. The results showed that the CuO NPs were able to be preferably uptaken into cells and induced cell damage via a variety of pathways including oxidative stress, mitochondrial damage, DNA damage, and cell cycle arrest to induce cell death of apoptosis, ferroptosis, and cuproptosis. Moreover, the key regulatory processes and the key genes for cell damage and cell death caused by CuO NPs were revealed by RNA-Seq. We also conducted in vivo experiments using a rat model to examine the contraceptive efficacy of both the bare CuO NPs and the CuO/thermosensitive hydrogel nanocomposite. The results demonstrated that the CuO NPs were highly effective for contraception. There was no sign of disrupting the homeostasis of copper and hormone, or causing inflammation and organ damage in vivo. In all, this nanostrategy exhibited huge potential for contraceptive development with high biosafety, efficacy, clinical translation, nonhormonal style, and on-demand for women.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Embarazo , Masculino , Femenino , Ratas , Animales , Semen , Cobre/farmacología , Anticoncepción , Anticonceptivos
9.
Chemosphere ; 344: 140393, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820873

RESUMEN

An emerging environmental pollutant may have a greater impact on phenotypic plasticity than its direct toxicity, causing maladaptive responses of organisms to their current environment. To better understand such ecological risks, we proposed a delicate plasticity hypothesis: if an emerging stressor acts on the fundamental processes underlying a specific adaptive plastic response, it is more likely to pose high risks to the phenotypic plasticity. Endocrine regulation is one of the critical processes of plasticity and is becoming a target for emerging pollutants. To test this hypothesis, we measured individual traits and the expression of endocrine-related genes in Daphnia magna in response to fish predation risk under exponentially increasing concentrations of the antidepressant sertraline, a selective serotonin reuptake inhibitor. The results showed that sertraline impaired most of the defense responses of D. magna at concentrations lower than the effective concentrations of its direct toxicity. The high risks of sertraline on inducible defenses were also visually reflected in the relationships between toxicity and plasticity strength, that is, most of the defense responses exponentially decayed with an increase in sertraline toxicity. In addition, the expression of genes involved in serotonin synthesis was significantly correlated with the expression of other endocrine-related genes and with changes in morphological traits. These results revealed that environmental sertraline pollution could disturb endocrine regulation and cause high risks to inducible defenses of D. magna, providing evidence supporting the delicate plasticity hypothesis.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Sertralina/toxicidad , Sertralina/metabolismo , Daphnia , Conducta Predatoria , Antidepresivos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Peces , Contaminantes Ambientales/metabolismo , Contaminantes Químicos del Agua/metabolismo
10.
Reprod Biol ; 23(3): 100785, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392490

RESUMEN

Menstruation is a specific physiological phenomenon in female humans that is regulated by complex molecular mechanisms. However, the molecular network involved in menstruation remains incompletely understood. Previous studies have suggested that C-X-C chemokine receptor 4 (CXCR4) is involved; however, how CXCR4 participates in endometrial breakdown remains unclear, as do its regulatory mechanisms. This study aimed to clarify the role of CXCR4 in endometrial breakdown and its regulation by hypoxia-inducible factor-1 alpha (HIF1A). We first confirmed that CXCR4 and HIF1A protein levels were significantly increased during the menstrual phase compared with the late secretory phase using immunohistochemistry. In our mouse model of menstruation, real-time PCR, western blotting, and immunohistochemistry showed that CXCR4 mRNA and protein expression levels gradually increased from 0 to 24 h after progesterone withdrawal during endometrial breakdown. HIF1A mRNA and HIF1A nuclear protein levels significantly increased and peaked at 12 h after progesterone withdrawal. Endometrial breakdown was significantly suppressed by the CXCR4 inhibitor AMD3100 and the HIF1A inhibitor 2-methoxyestradiol in our mouse model, and HIF1A inhibition also suppressed CXCR4 mRNA and protein expression. In vitro studies using human decidual stromal cells showed that CXCR4 and HIF1A mRNA expression levels were increased by progesterone withdrawal and that HIF1A knockdown significantly suppressed the elevation in CXCR4 mRNA expression. CD45+ leukocyte recruitment during endometrial breakdown was suppressed by both AMD3100 and 2-methoxyestradiol in our mouse model. Taken together, our preliminary findings suggest that endometrial CXCR4 expression is regulated by HIF1A during menstruation and may promote endometrial breakdown, potentially via leukocyte recruitment.


Asunto(s)
Menstruación , Progesterona , Animales , Femenino , Humanos , Ratones , 2-Metoxiestradiol/metabolismo , Endometrio/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucocitos/metabolismo , Progesterona/metabolismo , Receptores de Quimiocina/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , ARN Mensajero/metabolismo
11.
Stem Cell Rev Rep ; 19(6): 1954-1964, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37226011

RESUMEN

Endometrial damage repair disorder is the main reason of intrauterine adhesions (IUA) and thin endometrium (TA), which is caused by curettage or infection. Exosomal miRNAs derived from human umbilical cord mesenchymal stem cells (hucMSCs) were reported to play an important role in damage repair disorder, including endometrial fibrosis. In this study, we aimed to investigate the role of hucMSCs-derived exosomal microRNA-202-3p (miR-202-3p) in endometrial damage repair. We established rat endometrial injury model according to curettage to mimic women curettage abortion operation. The miRNA array analysis indicated that miR-202-3p was increased and matrix metallopeptidase 11 (MMP11) was decreased in the exosomes-treated rat uterine tissues. Bioinformatics analysis suggested that MMP11 is the target gene of miR-202-3p. We observed that the mRNA and protein of MMP11 were significantly decreased in exosome treatment group on day 3, and the components of extracellular matrix (ECM) COL1A1, COL3A1, COLVI and fibronectin (FN) protein were increased. And we found that when the injured human stromal cells were treated with miR-202-3p overexpression exosomes, the COLVI and FN were also upregulated in protein and mRNA expression level. For the first time MMP11 was proved to be the target gene of miR-202-3p by dual luciferase reporter system. At last, we found the state of stromal cells was better in miR-202-3p overexpression exosomes group compared to exosomes group, and miR-202-3p overexpression exosomes markedly upregulated the FN and collagen on day 3 after endometrial injury. We thought that miR-202-3p overexpression exosomes promoted endometrial repair by regulating ECM remodeling in early repair of damaged endometrium. Taken together, these experimental findings may provide a theoretical basis for understanding endometrial repair and an insight into the clinical treatment for IUA. Human umbilical cord mesenchymal stem cells exosomal miR-202-3p could regulate the expression of MMP11 and promote the accumulation of extracellular matrix, such as COL1A1, COL3A1, COLVI, FN, in the early repair period of endometrial injury.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Humanos , Femenino , Ratas , Animales , Exosomas/genética , Exosomas/metabolismo , Metaloproteinasa 11 de la Matriz/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Endometrio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Matriz Extracelular/metabolismo , Cordón Umbilical/metabolismo , ARN Mensajero/metabolismo
12.
Animals (Basel) ; 12(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35565528

RESUMEN

In July 2021, a disease with a high mortality rate broke out in freshwater cultured hybrid sturgeon in Zhengzhou, Henan Province. A dominant strain, H-701, was isolated from diseased fish; physiological changes in diseased fish were investigated and molecular identification, biochemical characterization, and pathogenicity and drug sensitivity tests of H-701 were performed. The 16S rRNA gene sequence of H-701 was 99.86% homologous with that of Vibrio metschnikovii in GenBank. The 50% lethal dose of H-701 was 3.72 ± 0.929 × 104 CFU/g fish weight. The proportion of monocytes, neutrophils, and eosinophils in the blood of diseased sturgeon increased significantly, whereas the proportion of lymphocytes decreased. In diseased fish, the serum levels of total protein, albumin, globulin, and alkaline phosphatase decreased significantly, and those of aspartate aminotransferase, alanine aminotransferase, and complement C3 increased significantly. There were obvious pathological changes in several tissues of the diseased fish. H-701 was sensitive to antibiotics such as florfenicol, enrofloxacin, and doxycycline. This study not only demonstrated that V. metschnikovii was the cause of death of a large number of hybrid sturgeon but also revealed its potential risk in hybrid sturgeon aquaculture. The results provide a basis for the diagnosis and prevention of this disease.

13.
Orphanet J Rare Dis ; 17(1): 151, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379272

RESUMEN

BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm. A few LCH patients had Macrophage activation syndrome-hemophagocytic lymphohistiocytosis (MAS-HLH), a life-threatening, hyper-inflammatory syndrome. We retrospectively described the clinical-biological characteristics of a series of 28 pediatric LCH patients with MAS-HLH in a single center. We further analyzed the difference in treatment outcomes between second-line chemotherapy (cytarabine and cladribine) and targeted therapy (dabrafenib) for BRAF-V600E-positive patients. RESULTS: LCH patients with MAS-HLH were aged < 2 years, harbored high frequencies of risk organ, skin, or lymph nodes involvement, and most of them carried BRAF-V600E mutation in lesions (88.0%) or plasma (90.5%). Patients were firstly treated with the initial induction first-line therapy (vindesine-steroid combination), and most of them (26/28) failed to control the active MAS-HLH after one six-week course of induction treatment. Then they were shifted to second-line chemotherapy or targeted therapy dabrafenib. BRAF-V600E-mutant patients treated with dabrafenib had prompt resolution of MAS-HLH signs and symptoms with less toxicity than second-line chemotherapy. Moreover, the progression-free survival (PFS) rate for patients given dabrafenib was much higher than those treated with chemotherapy (4 year-PFS: 75% vs. 14.6%, P = 0.034). CONCLUSIONS: LCH patients with MAS-HLH harbored specific clinical-biology characteristics compared to the multisystem LCH without MAS-HLH. The BRAF inhibitor dabrafenib provides a promising treatment option for LCH with MAS-HLH.


Asunto(s)
Histiocitosis de Células de Langerhans , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Niño , Preescolar , Histiocitosis de Células de Langerhans/diagnóstico , Histiocitosis de Células de Langerhans/tratamiento farmacológico , Humanos , Linfohistiocitosis Hemofagocítica/tratamiento farmacológico , Síndrome de Activación Macrofágica/tratamiento farmacológico , Mutación , Estudios Retrospectivos , Resultado del Tratamiento
14.
Andrologia ; 54(3): e14350, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34904262

RESUMEN

Activating transcription factor 6 (ATF6), also known as ACHM7, ATF6A, encodes a transcription factor that activates target genes for the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. It functions as nuclear transcription factor via a cis-acting ER stress response element (ERSE) that is presented in the promoters of genes encoding ER chaperones. Studies have shown that endoplasmic reticulum stress (ERS) can cause damage to spermatozoa and testes, leading to male sterility. And we find that the expression of ATF6 in spermatozoa of some infertile patients is significantly reduced. Then, we construct the Atf6 knockout mice model and interestingly find a decline in male fertility. The downstream gene testis-specific serine/threonine-protein kinase 4 (Tssk4) is screened based on transcriptome sequencing. We use Western blot and real-time PCR to confirm this result in both 293T cells and Atf6 knockout mice. TSSK4 is essential in male germ cell genesis and sperm maturation. Our results suggest that the expression of TSSK4 may be regulated by ATF6. The effect of Atf6 knockout on the reproductive development of male mice may be related to the low expression of TSSK4, which further verify that there may be some relationship between ERS and male reproduction.


Asunto(s)
Factor de Transcripción Activador 6 , Retículo Endoplásmico , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Espermatogénesis/genética , Factores de Transcripción/genética
15.
Acta Biomater ; 138: 561-575, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774783

RESUMEN

The existing adverse effects of copper in copper-containing intrauterine devices (Cu-IUDs) have raised concerns regarding their use. These adverse effects include burst release of cupric ions (Cu2+) at the initial stage and an increasingly rough surface of the Cu-IUDs. In this study, we investigated the use of two copper alloys, Cu-38 Zn and H62 as the new upgrading or alternative material for IUDs. Their corrosive properties were studied in simulated uterine fluid (SUF) by using electrochemical methods, with pure Cu as a control. We studied the in vitro long-term corrosion behaviors in SUF, cytotoxicity to uterine cells (human endometrial epithelial cells and human endometrial stromal cells), in vivo biocompatibility and contraceptive efficacy of pure Cu, H62, and Cu-38 Zn. In the first month, the burst release rate of Cu2+ in the Cu-38 Zn group was significantly lower than those in the pure Cu and H62 groups. The in vitro cytocompatibility Cu-38 Zn was better than that of pure Cu and H62. Moreover, Cu-38 Zn showed improved tissue biocompatibility in vivo experiments. Therefore, the contraceptive efficacy of the Cu-38 Zn is still maintained as high as the pure Cu while the adverse effects are significantly eased, suggesting that Cu-38 Zn can be a suitable potential candidate material for IUDs. STATEMENT OF SIGNIFICANCE: The existing adverse effects associated with the intrinsic properties of copper materials for copper-containing intrauterine devices (Cu-IUD) are of concern in their employment. Such as, burst release of cupric ions (Cu2+) at the initial stage and an increasingly rough surface of the Cu-IUD. In this work, Cu alloyed with a high amount of bioactive Zn was used for a Cu-IUD. The Cu-38 Zn alloy exhibited reduced burst release of Cu2+ within the first month compared with the pure Cu and H62. Furthermore, the Cu-38 Zn alloy displayed significantly improved biocompatibility and a much smoother surface. Therefore, high antifertility efficacy of the Cu-38 Zn alloy was well maintained, while the adverse effects are significantly eased, suggesting that the Cu-38 Zn alloy is promising for a Cu-IUD.


Asunto(s)
Aleaciones , Dispositivos Intrauterinos de Cobre , Aleaciones/farmacología , Cobre/farmacología , Corrosión , Estudios de Factibilidad , Femenino , Humanos , Zinc
16.
Cytokine ; 149: 155729, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34673333

RESUMEN

OBJECT: Goal of this research was to investigate values of serum cytokines in childhood HLH with different triggers, with the expectation to find secretion spectrum of 5 main types of underlying diseases. METHOD: 118 newly diagnosed HLH were included, and serum concentrations of 6 cytokines were tested before treatment began. Absolute cytokine levels and ratios between them were then studied in the HLH groups collectively and separately RESULTS: In general, IFN-γ, IL-10 and IL-6 showed differences among 5 HLH groups. Specifically, relative levels of these three cytokines to each other were meaningful in distinguishing 4 types of HLH. Level of IL-6 was higher than those of IFN-γ or IL-10 in HLH driven by Systemic auto-inflammatory disorders (SAIDs) or Langerhans Cell Histiocytosis (LCH), while primary HLH and EBV-HLH shared elevated ratio of IL-10 to IL-6. Although more than one distinctive ratios were found in 3 HLH groups, combination of these parameters didn't offer optimal balance between sensitivity and specificity. CONCLUSION: As a group of easily gained laboratory findings, cytokine levels were reliable in the procedure of roughly classifying HLH cases with the help of patients' clinical phenotype. However, adequate data is still needed to explore the significance of these indicators in identifying one particular underlying disease accurately.


Asunto(s)
Citocinas/sangre , Linfohistiocitosis Hemofagocítica/sangre , Células TH1/metabolismo , Células Th2/metabolismo , Adolescente , Recuento de Células Sanguíneas/métodos , Niño , Preescolar , Femenino , Humanos , Lactante , Interferón gamma/sangre , Interleucina-10/sangre , Interleucina-6/sangre , Masculino , Sensibilidad y Especificidad , Balance Th1 - Th2/fisiología
17.
Toxicol Lett ; 352: 61-69, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624459

RESUMEN

Mitomycin treatment induces pulmonary toxicity, and alveolar epithelial cell senescence is crucial in the pathogenesis of the latter. However, the mechanism by which mitomycin induces alveolar epithelial cell senescence has yet to be elucidated. In this work, different doses (37.5-300 nM) of mitomycin induced the senescence of human alveolar type II-like epithelial cells and enhanced the phosphorylation of GSK3ß (S9). The GSK3ß (S9A) mutant reversed the senescence of mitomycin-treated alveolar epithelial cells. Pharmacological inhibition and gene deletion of Akt1, a kinase that regulates the phosphorylation of GSK3ß (S9), suppressed mitomycin-induced alveolar epithelial cell senescence. The knockdown of p53, a downstream effector of GSK3ß and an important regulator of cell senescence, repressed mitomycin-induced alveolar epithelial cell senescence. Treatment with baicalein weakened the phosphorylation of GSK3ß (S9) and alleviated the senescence of alveolar epithelial cells brought about by mitomycin treatment. GSK3ß (S9) phosphorylation appears to be the first signal involved in the mitomycin-induced senescence of alveolar epithelial cells and may present a potential target for attenuating mitomycin-induced pulmonary toxicity.


Asunto(s)
Alquilantes/toxicidad , Regulación hacia Abajo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitomicina/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Células A549 , Senescencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Flavanonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Imidazoles/farmacología , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Alveolos Pulmonares/citología , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
J Transl Med ; 19(1): 295, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238315

RESUMEN

BACKGROUND: Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial-mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. METHODS: The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3ß/Snail signaling pathway-related proteins were also evaluated by western blotting. RESULTS: CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3ß/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. CONCLUSION: These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3ß/Snail pathway by inducing EMT.


Asunto(s)
Carcinoma , Transición Epitelial-Mesenquimal , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimerina 1 , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
19.
Cereb Cortex Commun ; 2(2): tgab026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34296171

RESUMEN

The locus coeruleus (LC) produces phasic and tonic firing patterns that are theorized to have distinct functional consequences. However, how different firing modes affect learning and valence encoding of sensory information are unknown. Here, we show bilateral optogenetic activation of rat LC neurons using 10-Hz phasic trains of either 300 ms or 10 s accelerated acquisition of a similar odor discrimination. Similar odor discrimination learning was impaired by noradrenergic blockade in the piriform cortex (PC). However, 10-Hz phasic light-mediated learning facilitation was prevented by a dopaminergic antagonist in the PC, or by ventral tegmental area (VTA) silencing with lidocaine, suggesting a LC-VTA-PC dopamine circuitry involvement. Ten-hertz tonic stimulation did not alter odor discrimination acquisition, and was ineffective in activating VTA DA neurons. For valence encoding, tonic stimulation at 25 Hz induced conditioned odor aversion, whereas 10-Hz phasic stimulations produced an odor preference. Both conditionings were prevented by noradrenergic blockade in the basolateral amygdala (BLA). Cholera Toxin B retro-labeling showed larger engagement of nucleus accumbens-projecting neurons in the BLA with 10-Hz phasic activation, and larger engagement of central amygdala projecting cells with 25-Hz tonic light. These outcomes argue that the LC activation patterns differentially influence both target networks and behavior.

20.
Mol Med Rep ; 23(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33537797

RESUMEN

Following the publication of the above paper, the authors drew to the Editor's attention that they had identified some errors in Fig. 5A. First, the authors were unable to locate the original images for Fig. 5A; furthermore, repetitions of the same experiments yielded results that were opposite to those that the authors had originally reported. These results were integral to the study, and affected the reported conclusions in the article. Therefore, the authors requested that the paper be withdrawn from the publication. The Editor of Molecular Medicine Reports has considered the authors' request, and agrees that the article should be retracted from the Journal. Note that all that authors agree with the retraction of this paper, and the Editor and the authors apologize to the readership of the Journal for any inconvenience caused. [the original article was published in Molecular Medicine Reports 19: 5275-5280, 2019; DOI: 10.3892/mmr.2019.10191].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...