Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000797

RESUMEN

Zinc stearate (Znst) was physically blended with the sodium 4-[(4 chlorobenzoyl) amino] benzoate (SCAB) to obtain the SCAB-Znst composite nucleating agent. Znst was used to improve the dispersion property of SCAB and exert a lubricating effect on the PP matrix. The scanning electron microscopy and the fracture surface morphology of the PP/SCAB composite illustrated that the addition of Znst greatly reduced the aggregation phenomenon of SCAB in the PP matrix. The result of the rotary rheometer indicated that Znst exhibits internal lubrication in PP. The DSC result illustrated that the crystallization properties of PP were improved. Compared with pure PP, the Tc of the PP/SCAB composite increased by 1.44 °C (PP/Znst), 13.48 °C (PP/SCAB), and 14.96 °C (PP/SCAB-Znst), respectively. The flexural strength of pure PP, PP/SCAB, and PP/SCAB-Znst were 35.8 MPa, 38.8 MPa, and 40.6 MPa, respectively. The tensile strength of the PP/SCAB and PP/SCAB-Znst reached the values of 39.8 MPa and 42.9 MPa, respectively, compared with pure PP (34.1 MPa). The results demonstrated that Znst can promote the dispersion of SCAB in the PP matrix while exerting a lubricating effect, which enabled the enhancement of the crystalline and mechanical properties of PP.

2.
Langmuir ; 40(24): 12465-12474, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38855944

RESUMEN

Polymerization confined to the pore was first adapted for the nanoscale structure adjustment of adsorption resin. The self-cross-linked polymer (P-1) formed in the pore of hyper-cross-linked resin (HR) by the Friedel-Crafts reaction of p-dichloroxylene (p-DCX), occupying the macropore of the HR resin and bringing about an external micropore. Compared with the raw HR resin, the volume of the micropore of HR@P-1 in 0.4 < D < 1 nm increased but the volume of the macropore has obviously decreased. After the loading of P-1 in the nanopore of HR, HR@P-1 has better gas adsorption performance. At 298 and 100 KPa, the adsorption capacity of CO2 is almost 30% higher than that of HR, reaching 35.7 cm3/g, due to the increase in the smaller micropore volume. Moreover, HR@P-1 has also been found to be the first C2H6-selective adsorption resin. The uptake of C2H6 is up to 56 cm3/g, and the IAST selectivity of C2H6/CH4 reaches 15.3. HR@P-1 can also separate syngas efficiently at ambient temperature and be regenerated by simple vacuum operation.

3.
Polymers (Basel) ; 15(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139981

RESUMEN

In this work, a novel α-nucleating agent (NA) for polypropylene (PP) termed APAl-3C-12Li was prepared and evaluated compared with the commercially available type NA-21. For the synthesis of the organophosphate-type NA (APAl-3C), the -OH group of the acid part of NA-21 was substituted by the isopropoxy group. The structure of APAl-3C was analyzed by spectroscopy and element analysis, the results of which were consistent with the theoretical molecular formula. APAl-3C's thermal stability was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG), which showed only weak mass loss below 230 °C, meaning that it would not decompose during the processing of PP. The APAl-3C-12Li was used as a novel nucleating agent, studying its effects on crystallization, microstructure, mechanical and optical properties. Tests were performed in a PP random copolymer at different contents, in comparison to the commercial NA-21. The composite with 0.5 wt% APAl-3C-12Li has a similar crystallization temperature of 118.8 °C as with the addition of 0.5 wt% NA-21. An advantage is that the composite with the APAl-3C-12Li has a lower haze value of 9.3% than the counterpart with NA-21. This is due to the weaker polarity of APAl-3C-12Li after the introduction of methyl and better uniform dispersion in the PP matrix, resulting in stronger improvement of optical and mechanical properties.

4.
Biotechnol Lett ; 45(5-6): 619-628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37071384

RESUMEN

OBJECTIVES: Eucommia ulmoides gum (EUG) is an important natural biomass rubber material, which is usually extracted from Eucommia ulmoides Oliver (EUO). In the extraction process of EUG, pretreatment is the most important step which can efficiently damage EUG-containing cell wall and improve yield of EUG. RESULTS: The FT-IR, XRD, DSC and TG results showed that the thermal properties and structure of the EUG from the dilute acids hydrolysis residue are similar with that of the EUG directly extracted from EUO leaves (EUGD). EUO leaves hydrolysis with AA had the highest EUG yield (16.1%), which was higher than the EUGD yield (9.5%). In the case of the EUO leaves hydrolysis with 0.33 ~ 0.67 wt% of acetic acid (AA), the total sugar was stable in the range of 26.82-27.67 g/L. Furthermore, the EUO leaves acid hydrolysate (AA as reagent) was used as carbon sources for lipid-producing fermentation by Rhodosporidium toruloides. After 120 h of fermentation, the biomass, lipid content and lipid yield were 12.13 g/L, 30.16% and 3.64 g/L, respectively. The fermentation results indicated organic acids were no toxic for Rhodosporidium toruloides and the AA also could be used as carbon source for fermentation.


Asunto(s)
Eucommiaceae , Hidrólisis , Eucommiaceae/química , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Acético , Hojas de la Planta/química , Carbono/análisis
5.
Appl Biochem Biotechnol ; 195(11): 6537-6556, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36877441

RESUMEN

The efficient and economical removal of fermentation inhibitors from the complex system of biomass hydrolysate was one of the basics and keys in bio-chemical transformation. In this work, post-cross-linked hydrophilic-hydrophobic interpenetrating polymer networks (PMA/PS_pc IPNs and PAM/PS_pc IPNs) were proposed to remove fermentation inhibitors from sugarcane bagasse hydrolysate for the first time. PMA/PS_pc and PAM/PS_pc IPNs can obviously enhance the adsorption performance towards fermentation inhibitors due to their higher surface area and hydrophilic-hydrophobic synergetic surface properties, especially PMA/PS_pc IPNs has higher selectivity coefficients of 4.57, 4.63, 4.85, 16.0, 49.43, and 22.69, and higher adsorption capacity of 24.7 mg/g, 39.2 mg/g, 52.4 mg/g, 9.1 mg/g, 13.2 mg/g, and 144.9 mg/g towards formic acid, acetic acid, levulinic acid (LA), 5-hydroxymethylfurfural (HMF), furfural, and acid-soluble lignin (ASL), respectively, in a lower total sugar loss of 2.03%. The adsorption kinetics and isotherm of PMA/PS_pc IPNs were studied to elucidate its adsorption behavior towards fermentation inhibitors. In addition, the cyclic utilization property of PMA/PS_pc IPNs was stable. Synthesizing PMA/PS_pc IPNs is a new strategy to provide an efficient adsorbent for the removal of fermentation inhibitors from lignocellulosic hydrolysate.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Polímeros , Fermentación , Saccharum/química , Hidrólisis
6.
J Biotechnol ; 366: 10-18, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36868409

RESUMEN

This present study mainly focused on the investigation and optimization of the fermentation performance of oleaginous yeasts on Eucommia ulmoides Oliver hydrolysate (EUOH), which contains abundant and diverse sugars. More importantly, the impacts of the mixed strains fermentation compared with the single strain fermentation were analyzed and evaluated, through systematic investigations of substrate metabolism, cell growth, polysaccharide and lipid production, COD and ammonia-nitrogen removals. It was found that the mixed strains fermentation could effectively promote a more comprehensive and thorough utilization of the various sugars in EUOH, greatly improve COD removal effect, biomass and yeast polysaccharide production, but could not significantly improve the overall lipid content and ammonia nitrogen removal effect. In this study, when the two strains with the highest lipid content (i.e. L. starkeyi and R. toruloides) were mixed-cultured, the maximum lipid yield of 3.82 g/L was achieved, and the yeast polysaccharide yield, COD and ammonia-nitrogen removal rates of the fermentation (LS+RT) were 1.64 g/L, 67.4% and 74.9% respectively. When the strain with the highest polysaccharide content (i.e. R. toruloides) was mixed-cultured with the strains with strong growth activity (i.e. T. cutaneum and T. dermatis), a large amount of yeast polysaccharides could be obtained, which were 2.33 g/L (RT+TC) and 2.38 g/L (RT+TD) respectively. And the lipid yield, COD and ammonia-nitrogen removal rates of the fermentation (RT+TC), (RT+TD) were 3.09 g/L, 77.7%, 81.4% and 2.54 g/L, 74.9%, 80.4%, respectively.


Asunto(s)
Eucommiaceae , Fermentación , Amoníaco/metabolismo , Levaduras/metabolismo , Azúcares/metabolismo , Lípidos
7.
ACS Med Chem Lett ; 14(3): 297-304, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923916

RESUMEN

Selective CDK2 inhibitors have the potential to provide effective therapeutics for CDK2-dependent cancers and for combating drug resistance due to high cyclin E1 (CCNE1) expression intrinsically or CCNE1 amplification induced by treatment of CDK4/6 inhibitors. Generative models that take advantage of deep learning are being increasingly integrated into early drug discovery for hit identification and lead optimization. Here we report the discovery of a highly potent and selective macrocyclic CDK2 inhibitor QR-6401 (23) accelerated by the application of generative models and structure-based drug design (SBDD). QR-6401 (23) demonstrated robust antitumor efficacy in an OVCAR3 ovarian cancer xenograft model via oral administration.

8.
Appl Biochem Biotechnol ; 195(5): 3406-3424, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36598641

RESUMEN

Cane molasses is a by-product of sugar industry. It is widely used in fermentation field, but pigment compounds affect its further application. In this study, nonpolar hyper-cross-linked adsorption resins (HCARs) were synthesized by pendent vinyl groups cross-linking reaction, and were applied to decolorization of molasses. The correlation between the structure and the decolorization performance of HCARs was studied, and the results showed that the Brunauer-Emmett-Teller (BET) surface area and the pore volume of the resin significantly increased to 574.4 m2·g-1 and 1.40 cm3·g-1 after the Friedel-Crafts alkylation reaction with a catalyst dosage of 2.25% at 343 K for 7 h. Furthermore, the decolorization rate of molasses by the HCAR was 74%, and recycle decolorization performance of the resin was stable. The adsorption kinetics results showed that the pseudo-second-order dynamic model could more realistically reflect the decolorization mechanism of molasses on HCARs, and liquid film diffusion is the main rate-limiting step. The results of fixed-bed experiments show that D-ST-DVB resin has a good decolorization effect and recycling ability. Therefore, it is a feasible strategy for the decolorization of molasses with nonpolar HCAR.


Asunto(s)
Melaza , Poliestirenos , Poliestirenos/química , Bastones , Fermentación
9.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080711

RESUMEN

In this work, a kind of aryl phosphate salt nucleating agent (APAl-12C) was synthesized, which was replaced in the hydroxyl group on the aluminum hydroxy bis [2,2'-methylene-bis(4,6-di-tert-butylphenyl) phosphate] (APAl-OH) by lauroyloxy, which could improve the dispersion between the nucleating agent and the iPP matrix and reduce the migration potential of the nucleating agent in the iPP matrix by increasing the molecular weight. The structure of the nucleating agent APAl-12C was analyzed by fourier infrared spectroscopy (FT-IR ) and 1H NMR. The differential scanning calorimeter (DSC) results indicated that the addition of APAl-OH or APAl-12C alone was inferior to the commercial nucleating agent NA-21 (compounds of APAl-OH and Lithium laurate) in terms of the crystallization behavior, which may be due to the importance of metal Li in the crystallization property. Thus, the iPP/A12C-Li composites were prepared with APAl-12C, lithium laurate (lilaurate) and the iPP matrix. The crystallization behavior, morphology, optical and mechanical properties for the iPP/A12C-Li composites were systematically studied and compared with that of the iPP/NA-21 composite. Among the iPP/A12C-Li composites with the addition of 0.5 wt%, APAl-12C/Lilaurate had the fastest crystallization rate and reduced the haze value of the neat iPP from 36.03% to 9.89% without changing the clarity, which was better than that of the iPP/NA-21 composite. This was due to the weakening of the polarity of the APAl-12C after lauroyloxy substitution and better dispersion in the iPP matrix, resulting in a significant improvement in the optical properties.

10.
Polymers (Basel) ; 14(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36145968

RESUMEN

Isotactic polybutene (iPB) has a wide application in the water pipe field. However, the most valuable form I, needs 7 days to complete the transformation. In this study, the attapulgite (ATP), which produces lattice matching of the iPB form I, was selected to prepare an iPB/ATP composite. The Fischer-Tropsch wax (FTW) was grafted with maleic anhydride to obtain MAFT, and the ATP structure was reset by reactions with MAFT to the prepared FATP, which improved the interface compatibility of the ATP and iPB. The Fourier transform infrared spectroscopy (FT-IR) and the water contact angle test confirmed the successful synthesis of FATP. X-ray diffraction (XRD) verified that the graft of MAFT did not affect the crystal structure of ATP. The iPB + 5% FATP had the maximum flexural strength, which was 12.45 Mpa, and the flexural strength of the iPB + 5% FATP annealing for 1 day was much higher than others. Scanning electron microscope (SEM) photographs verified that FATP and iPB had good interface compatibility. The crystal transformation behavior indicated that the iPB + 5% FATP had the fastest crystal transformation rate, which proved that the reset structure, ATP, greatly accelerated the crystal transformation of iPB. This was a detailed study on the effect of lattice matching, interfacial compatibility and internal lubrication of the reset structure, ATP, in the nucleation and growth stages of iPB form I. The result was verified by XRD, differential scanning calorimetry (DSC), Avrami kinetics and polarizing microscope (POM) analysis.

11.
Appl Biochem Biotechnol ; 193(11): 3469-3482, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34245403

RESUMEN

Understanding factors that affect the catalytic efficiency and synergism of enzymes is helpful to enhance the process of bioconversion. In this study, birch wood (BW) was sequentially treated by delignification (DL), deacetylation (DA), and decrystallization (DC) treatments. The physiochemical structures of treated BW were characterized. Moreover, the influences of sequential treatments on the catalytic efficiency and synergism of xylanase and cellulase were studied. DL treatments efficiently improved the conversion of cellulose and xylan. A high degree of synergy (DS) between xylanase and cellulase was produced during hydrolysis of DL-treated BW. DA treatments enhanced xylan conversion but reduced the DS between xylanase and cellulase for xylan hydrolysis, whereas DC treatments enhanced cellulose conversion but reduced the DS between xylanase and cellulase for cellulose hydrolysis. The cellulose conversion of lithium chloride/N,N-dimethylacetamide (LiCl/DMAc)-treated BW (89.69%) was higher than the cellulose conversion of ball milling (BM)-treated BW (81.63%), whereas the xylan conversion of LiCl/DMAc-treated BW (83.77%) was lower than the xylan conversion of BM-treated BW (87.21%). This study showed that the catalytic efficiency and synergism of xylanase and cellulase are markedly affected by lignin hindrance, hemicellulose acetylation, and cellulose crystallization.


Asunto(s)
Celulasas/química , Endo-1,4-beta Xilanasas/química , Catálisis , Hidrólisis
12.
J Med Chem ; 64(3): 1626-1648, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33506674

RESUMEN

Napabucasin, undergoing multiple clinical trials, was reported to inhibit the signal transducer and transcription factor 3 (STAT3). To better elucidate its mechanism of action, we designed a napabucasin-based proteolysis targeting chimera (PROTAC), XD2-149 that resulted in inhibition of STAT3 signaling in pancreatic cancer cell lines without inducing proteasome-dependent degradation of STAT3. Proteomics analysis of XD2-149 revealed the downregulation of the E3 ubiquitin-protein ligase ZFP91. XD2-149 degrades ZFP91 with DC50 values in the nanomolar range. The cytotoxicity of XD2-149 was significantly, but not fully, reduced with ZFP91 knockdown providing evidence for its multi-targeted mechanism of action. The NQO1 inhibitor, dicoumarol, rescued the cytotoxicity of XD2-149 but not ZFP91 degradation, suggesting that the NQO1-induced cell death is independent of ZFP91. ZFP91 plays a role in tumorigenesis and is involved in multiple oncogenic pathways including NF-κB and HIF-1α.


Asunto(s)
Benzofuranos/síntesis química , Benzofuranos/farmacología , Proteínas Mutantes Quiméricas/química , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/fisiopatología , Proteolisis , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/química
13.
Prep Biochem Biotechnol ; 51(7): 669-677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33302781

RESUMEN

The biochemical treatment of cellulosic ethanol wastewater (CEW) is considered to be an ideal green process. To screen out the best oleaginous yeastfor the utilization of cellulosic ethanol wastewater, four oleaginous yeasts (Trichosporon cutaneum, Rhorosporidium toruloides, Cryptococcus albidus and T. coremiiforme) were compared to assess their abilities for lipid production in terms of biomass production, lipid content and lipid yield. Furthermore, thechemical oxygen demand (COD) conversion rate, COD degradation and fatty acid composition were calculated to analyze the effect of wastewaters treatment. According to the fermentation results, the highest biomass and lipid yield of T. cutaneum in CEW were 20.945 and 1.56 g/L, respectively, while the R. toruloides reached the highest lipid content (17.32%). The maximum conversion rates of T. cutaneum are 73.64 and 6.06%, respectively, in terms of conversion yield of biomass/COD and lipids/COD. The content of fatty acids showed that after six days' fermentation, T. coremiiforme obtained the highest unsaturated fatty acid content, the content of C18:1 and C18:2 was 57.64%. This study suggests that T. cutaneum has great potential for lipid production and wastewaters treatment from cellulosic ethanol fermentation.


Asunto(s)
Biomasa , Celulosa/metabolismo , Etanol/metabolismo , Aguas Residuales/microbiología , Purificación del Agua , Levaduras/crecimiento & desarrollo
14.
Bioresour Technol ; 318: 124053, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32942092

RESUMEN

Economical removal of fermentation inhibitors from lignocellulosic hydrolysate plays a considerable role in bioconversion of lignocellulose biomass. In this work, the textural properties of polyacrylamide/polystyrene interpenetrating polymer networks (PAM/PS IPNs) on adsorption of fermentation inhibitors from sugarcane bagasse hydrolysate (SCBH) were investigated for the first time. The results showed that, the specific surface area, pore diameter and surface polarity had important influence on its adsorption performance towards sugars, organic acids, furans and acid-soluble lignin. The PAM/PS IPNs under the optimal copolymerization situation achieved the high selectivity coefficients of 4.07, 14.9, 21.2 and 25.8 with respective to levulinic acid, furfural, hydroxymethylfurfural (HMF) and acid-soluble lignin, and had a low total sugar loss of 2.09%. Overall, this research puts forward a design and synthetic strategy for adsorbent to remove fermentation inhibitors from lignocellulosic hydrolysate.


Asunto(s)
Saccharum , Resinas Acrílicas , Adsorción , Celulosa , Fermentación , Hidrólisis , Lignina/metabolismo , Polímeros , Poliestirenos , Saccharum/metabolismo
15.
ChemMedChem ; 15(21): 2029-2039, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32748543

RESUMEN

Mitochondrial dysfunction is a hallmark of cancer cells and targeting cancer mitochondria has emerged as a promising anti-cancer therapy. Previously, we repurposed chlorambucil by conjugating it to a mitochondrial targeting triphenylphosphonium (TPP) group to design Mito-Chlor, a novel agent that acts on mitochondria DNA (mtDNA). Herein, we show that Mito-Chlor, but not chlorambucil, inhibits the nascent transcription of mtDNA. Clustering analysis of transcriptomic profile of our Bru-seq database led to the identification of another mitochondrial transcription inhibitor SQD1, which inhibits the proliferation of MIA PaCa-2 cells with an IC50 of 1.3 µM. Interestingly, Mito-Chlor reduces expression of mitochondrial proteins, interferes with mitochondria membrane potential, and impairs oxidative phosphorylation while SQD1 does not. Both compounds increased cellular and mitochondrial reactive oxygen species and stimulated similar signaling pathways in response to oxidative stress. As mitochondrial transcription inhibitors and redox modulators, SQD1 and Mito-Chlor are promising for the treatment of pancreatic cancer by blocking mitochondrial function.


Asunto(s)
Antineoplásicos/farmacología , ADN Mitocondrial/efectos de los fármacos , Descubrimiento de Drogas , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , ADN Mitocondrial/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad , Células Tumorales Cultivadas
16.
Appl Biochem Biotechnol ; 190(2): 423-436, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31376051

RESUMEN

Lignocellulosic hydrolysate contains complex nonsugar compounds and undegraded sugars in the process of preparing platform compound levulinic acid (LA) and furfural by one-step dilute-acid hydrolysis. For efficiently and comprehensively utilizing the hydrolysate, a series of polar modified resins were synthesized for adsorption and separation of the sugarcane bagasse hydrolysate to obtain platform compounds and fermentable hydrolysate simultaneously. The adsorption capacities of LA and furfural were optimized to 85.32 mg/g and 33.55 mg/g on polar modified resin prepared with 80 wt% glycidyl methacrylate (GMA -80), which was much higher than nonpolar resin (4.16 mg/g and 16.14 mg/g). GMA-80 obtained the best comprehensive adsorption property, whose desorption rates were 99.90% and 89.86% for LA and furfural, respectively, and its regeneration performance was also excellent, indicating that the resin is a potential adsorbent and expected to be used in the separation and purification of the lignocellulosic hydrolysate.


Asunto(s)
Celulosa/química , Polímeros/química , Saccharum/química , Estireno/química , Compuestos de Vinilo/química , Adsorción , Hidrólisis
17.
Bioresour Technol ; 299: 122625, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31881437

RESUMEN

The production of high-purity xylobiose from lignocellulose is an expensive and tedious process. In this work, the production of xylobiose from enzymatic hydrolysis of alkaline oxidation pretreated sugarcane bagasse was investigated. Furthermore, a simple process for the separation of xylobiose from enzymatic hydrolysate by activated carbon absorption, water washing, and ethanol-water desorption was developed. Under the optimized separation conditions, 96.77% xylobiose was adsorbed at 16% activated carbon loadings. Moreover, xylose and acetate could not be detected after washing by 3-fold volume of water. Xylobiose with 80.16% yield was eluted by 5-fold volume of 5% (v/v) ethanol-water. The reusability of activated carbon was evaluated by 5 cycles of adsorption-desorption process, suggesting that the activated carbon exhibited good reusability. The separated xylobiose sample with high-purity (97.29%) was confirmed by HPLC, ESI-MS, and NMR. Overall, this study provided a low-cost and robust technology for the production and separation of high-purity xylobiose from lignocellulose.


Asunto(s)
Saccharum , Celulosa , Disacáridos , Hidrólisis
18.
Prep Biochem Biotechnol ; 49(6): 597-605, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30929602

RESUMEN

A simple and accurate Nile Red fluorescent method was built to evaluate the lipid content of three different oleaginous yeasts by one standard curve. The staining of cells can be observed clearly by laser scanning confocal microscope, showing that Nile Red can enter into the cells of oleaginous yeasts easily. A series of conditions such as pretreating temperature, cell suspension concentration (OD600), staining time, Nile Red concentration and the type of suspension solvent were learnt systematically to obtain the optimal process parameters for Nile Red staining. After optimization, the fitting curve of Nile Red fluorescent method was established under suitable conditions (pretreating temperature: 50 °C, OD600: 1.0; staining time: 5 mins; Nile Red concentration: 1.0 µg/mL; suspension solvent: PBS) and it had a suitable correlation coefficient (R2 = 0.95) for lipid content measurement of different oleaginous yeasts. By this study, the possibility of lipid content determination of different oleaginous yeasts by one fitting curve can be proven and this will improve the efficiency of researches related to microbial lipid production.


Asunto(s)
Colorantes Fluorescentes/química , Lípidos/análisis , Microscopía Confocal/métodos , Oxazinas/química , Levaduras/química , Cryptococcus/química , Lipomyces/química , Coloración y Etiquetado/métodos , Temperatura , Trichosporon/química
19.
Bioresour Technol ; 283: 191-197, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30908983

RESUMEN

Elephant grass (Pennisetum purpureum) acid hydrolysate was used as substrate for anaerobic digestion for the first time. Within short period (ten days), the organic materials (sugars and organic acids) in the elephant grass hydrolysate could be utilized efficiently for stable biogas production that the COD removal, biogas yield, and CH4 content were 91.3 ±â€¯2.0%, 0.561 ±â€¯0.014 m3/kg COD consumption, and 68.1 ±â€¯4.6%, respectively throughout this bioprocess. During anaerobic digestion, almost no volatile fatty acids (VFAs) was accumulated (merely <0.1 g/L acetic acid was found) and the outlet pH was very stable (7.3 ±â€¯0.1). Meanwhile, the furans including furfural and 5-hydroxymethylfurfural (HMF) existing in the inlet substrate could be degraded. After anaerobic digestion, the outlet effluent was treated by combination of Fe-C micro-electrolysis and Fenton reaction to remove 93.1% of residual COD and 98.6% of color. Considering the performance, cost, operation, and environmental influence, this technology is suitable for industrial treatment of waste elephant grass.


Asunto(s)
Biocombustibles , Pennisetum/metabolismo , Anaerobiosis , Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Metano/metabolismo
20.
Sci Total Environ ; 663: 447-452, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716636

RESUMEN

Wastewater treatment is one important issue for turpentine plant and more wastewater generated by greater turpentine processing will prevent its further development. To solve this issue without extra place and new equipment, one industrial system for reuse and treatment of turpentine processing wastewater was introduced for the first time. For wastewater reuse, the technology was simple and easy to control that after neutralization by lime and absorption with activated carbon (optional, mostly not necessary), the wastewater could be reused for turpentine processing. After reuse, the wastewater was further treated by a biological system. During long-term application of wastewater reuse in this plant, it showed little influence on the products performance (mainly acid value) and final wastewater COD. Base on above advantages, the plant could decide when for wastewater drainage, and thus the amount of wastewater was reduced greatly. For the biological treatment, the COD of wastewater could be degraded to suitable level stably and the wastewater after treatment could be applied for daily life in the plant. Overall, considering the cost, operation, and performance, the whole system shows great potential and possibility of industrial application and therefore can be applied widely in the turpentine processing industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...