RESUMEN
OBJECTIVES: This study aimed to discover novel antifungals targeting Candida albicans glyceraldehyde-3-phosphate dehydrogenase (CaGAPDH), have an insight into inhibitory mode, and provide evidence supporting CaGAPDH as a target for new antifungals. METHODS: Virtual screening was utilized to discover inhibitors of CaGAPDH. The inhibitory effect on cellular GAPDH was evaluated by determining the levels of ATP, NAD, NADH, etc., as well as examining GAPDH mRNA and protein expression. The role of GAPDH inhibition in C. albicans was supported by drug affinity responsive target stability and overexpression experiments. The mechanism of CaGAPDH inhibition was elucidated by Michaelis-Menten enzyme kinetics and site-specific mutagenesis based on docking. Chemical synthesis was used to produce an improved candidate. Different sources of GAPDH were used to evaluate inhibitory selectivity across species. In vitro and in vivo antifungal tests, along with anti-biofilm activity, were carried out to evaluate antifungal potential of GAPDH inhibitors. RESULTS: A natural xanthone was identified as the first competitive inhibitor of CaGAPDH. It demonstrated in vitro anti-C. albicans potential but also caused hemolysis. XP-W, a synthetic side-chain-optimized xanthone, demonstrated a better safety profile, exhibiting a 50-fold selectivity for CaGAPDH over human GAPDH. XP-W also exhibited potent anti-biofilm activity and displayed broad-spectrum anti-Candida activities in vitro and in vivo, including multi-azole-resistant C. albicans. CONCLUSIONS: These results demonstrate for the first time that CaGAPDH is a valuable target for antifungal drug discovery, and XP-W provides a promising lead.
Asunto(s)
Antifúngicos , Candida albicans , Gliceraldehído-3-Fosfato Deshidrogenasas , Xantonas , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Xantonas/farmacología , Xantonas/química , Antifúngicos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Animales , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Humanos , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Ratones , Descubrimiento de DrogasRESUMEN
RNA interference (RNAi) can be developed as an alternative method of chemical pesticides for pest control. In this study, we noticed a specifically expressed gene (retinoid X receptor 1, TcRXR1) in the egg stage of T. cinnabarinus. RNAi was applied to investigate the function of TcRXR1. Results showed that with continuous feeding of dsTcRXR1, the larvae of T. cinnabarinus could still successfully develop to adult, which was in accordance with the low expression of TcRXR1 out of egg stage. High mortality of eggs was observed after eggs were treated with dsTcRXR1. To investigate the downstream genes of TcRXR1, the RNA samples after successful RNAi of TcRXR1 were analyzed by transcriptome analysis. According to function annotation of differentially expressed genes, 6 genes were selected for their potential function with the phenotype of dsTcRXR1, and among them, a chitinase gene (TcCHT-E) attained a high expression level in the late stage of egg, peaking just after the expression peak of TcRXR1. Mortality of eggs was observed under the effect of dsTcCHT-E as well as dsTcRXR1. In conclusion, TcRXR1 is a specific RNAi target for control of T. cinnabarinus, and its lethal mechanism might be disturbing chitin metabolism hatching of egg.
Asunto(s)
Plaguicidas , Tetranychidae , Animales , Interferencia de ARN , Receptores X Retinoide , Plaguicidas/farmacología , Control de Plagas , Tetranychidae/genética , Quitina/farmacologíaRESUMEN
NGAL is mainly secreted by neutrophils which play the core role in AECOPD. MCP-1 is secreted specifically by monocytes and macrophages. Both biomarkers are involved in the core process of acute inflammatory reaction in COPD. So We analyzed serum NGAL and MCP-1levels to explore their potential clinical values in the chronic obstructive pulmonary disease (COPD) .This study enrolled 97 COPD patients and 50 healthy controls. All participants received blood collection and lung function test and arterial blood gas measurements. The expression levels of serum NGAL and MCP-1 were measured by ELISA. The serum NGAL and MCP-1 levels of COPD with community-acquired pneumonia (COPD-CAP) patients were significantly higher than those of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients and healthy adults. The NGAL levels of the GOLD III and IV groups were significantly higher than those of the GOLD II group. Spearman correlation analysis showed a negative correlation between NGAL and FEV1%pred, FVC% pred. ROC curves indicated that NGAL has a high diagnostic value for both AECOPD and COPD-CAP. NGAL has the value of distinguishing GOLD I and II from GOLD III and IV. MCP-1 have moderate diagnostic value for COPD-CAP and can differentiate COPD-CAP from AECOPD. This study shows NGAL has certain diagnostic value for AECOPD and COPD-CAP, but can not distinguish the two. NGAL is closely related to airway remodeling and can be used as a potential indicator to distinguish the higher GOLD degree. MCP-1 can be used as potential indicator for the diagnosis of COPD-CAP.
Asunto(s)
Quimiocina CCL2/sangre , Infecciones Comunitarias Adquiridas , Lipocalina 2/sangre , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Biomarcadores/sangre , Infecciones Comunitarias Adquiridas/sangre , Infecciones Comunitarias Adquiridas/diagnóstico , Estudios Transversales , Femenino , Humanos , Inflamación/sangre , Inflamación/diagnóstico , Masculino , Persona de Mediana Edad , Neumonía/sangre , Neumonía/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Estudios RetrospectivosRESUMEN
Plantago asiatica L. is a natural medicinal plant that has been widely used for its various pharmacological effects such as antidiarrheal, anti-inflammatory, and wound healing. This study aims to explore the antidiarrheal active ingredients of Plantago asiatica L. that can be used as quality markers to evaluate P. asiatica L. superfine powder (PSP). Molecular docking experiment was performed to identify the effective components of P. asiatica L., which were further evaluated by an established mouse diarrhea model. Na+/K+-ATPase and creatine kinase (CK) activities and the Na+/K+ concentrations were determined. The gene expression of ckb and Atp1b3 was detected. PSP was prepared and evaluated in terms of the tap density and the angle of repose. The structures of PSPs of different sizes were measured by infrared spectra. The active ingredient contents of PSPs were determined by HPLC. The results indicated that the main antidiarrheal components of P. asiatica L. were luteolin and scutellarein that could increase the concentration of Na+ and K+ by upregulating the activity and gene level of CK and Na+/K+-ATPase. In addition, luteolin and scutellarein could also decrease the volume and weight of small intestinal contents to exert antidiarrheal activity. Moreover, as the PSP size decreased from 6.66 to 3.55 µm, the powder tended to be amorphous and homogenized and of good fluidity, the content of active compounds gradually increased, and the main structure of the molecule remained steady. The optimum particle size of PSP with the highest content of active components was 3.55 µm, and the lowest effective dose for antidiarrhea was 2,000 mg/kg. Therefore, the antidiarrheal active ingredients of PSP were identified as luteolin and scutellarein that exert antidiarrheal activity by binding with Na+/K+-ATPase. PSP was successfully prepared and could be used as a new dosage form for the diarrhea treatment.
RESUMEN
Streptococcus suis is an important zoonotic pathogen. The massive use of tylosin and other antibiotics in swine production has led to the emergence of resistant phenotypes of S. suis. However, there are no adequate measures available to address the problem of bacterial resistance. This study involved the use of 1/4 MIC (0.125 µg/mL) of tylosin to investigate resistance-related proteins by S. suis ATCC 700794. Our results showed that 171 proteins were differentially expressed in S. suis tested with 1/4 MIC (0.125 µg/mL) of tylosin using iTRAQ-based quantitative proteomic methods. TCS, heat shock protein and elongation factors were differentially expressed at 1/4 MIC (0.125 µg/mL) of tylosin compared to non treated, control cells. Using quantitative RT-PCR analysis, we verified the relationship between the differentially expressed proteins in S. suis with different MIC values. The data showed that expression profile for elongation factor G (fusA), elongation factor Ts (tsf), elongation factor Tu (tuf), putative histidine kinase of the competence regulon, ComD (comD), putative competence-damage inducible protein (cinA) and protein GrpE (grpE), observed in tylosin-resistant S. suis, correlated with that of S. suis ATCC 700794 at 1/4 MIC (0.125 µg/mL). The MIC of tylosin-resistant showed high-level resistance in terramycin, chlortetracycline, ofloxacin and enrofloxacin. Our findings demonstrated the importance of elongation factors, TCS and heat shock protein during development of tylosin resistance in S. suis. Thus, our study will provide insight into new drug targets and help reduce bacterial multidrug resistance through development of corresponding inhibitors.
Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Streptococcus suis/efectos de los fármacos , Streptococcus suis/genética , Tilosina/farmacología , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Infecciones Estreptocócicas/microbiología , Estrés FisiológicoRESUMEN
BACKGROUND: Hazy weather significantly increase air pollution and affect light intensity which may also affect medicinal plants growth. Syringa oblata Lindl. (S. oblata), an effective anti-biofilm medicinal plants, is also vulnerable to changes in plant photoperiods and other abiotic stress responses. Rutin, one of the flavonoids, is the main bioactive ingredient in S. oblata that inhibits Streptococcus suis biofilm formation. Thus, the present study aims to explore the biosynthesis and molecular basis of flavonoids in S. oblata in response to different light intensity. RESULTS: In this study, it was shown that compared with natural (Z0) and 25% ~ 35% (Z2) light intensities, the rutin content of S. oblata under 50% ~ 60% (Z1) light intensity increased significantly. In addition, an integrated analysis of metabolome and transcriptome was performed using light intensity stress conditions from two kinds of light intensities which S. oblata was subjected to: Z0 and Z1. The results revealed that differential metabolites and genes were mainly related to the flavonoid biosynthetic pathway. We found out that 13 putative structural genes and a transcription factor bHLH were significantly up-regulated in Z1. Among them, integration analysis showed that 3 putative structural genes including 4CL1, CYP73A and CYP75B1 significantly up-regulated the rutin biosynthesis, suggesting that these putative genes may be involved in regulating the flavonoid biosynthetic pathway, thereby making them key target genes in the whole metabolic process. CONCLUSIONS: The present study provided helpful information to search for the novel putative genes that are potential targets for S. oblata in response to light intensity.
Asunto(s)
Flavonoides/biosíntesis , Luz , Metaboloma/efectos de la radiación , Syringa/metabolismo , Transcriptoma/efectos de la radiación , Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Syringa/genética , Syringa/efectos de la radiaciónRESUMEN
Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in most biological growth and biofilm formation, suggesting that GS may be used as a promising target for antibacterial therapy. We asked whether a GS inhibitor could be found as an anti-infective agent of Staphylococcus xylosus (S. xylosus). Here, computational prediction followed by experimental testing was used to characterize GS. Sorafenib was finally determined through computational prediction. In vitro experiments showed that sorafenib has an inhibitory effect on the growth of S. xylosus by competitively occupying the active site of GS, and the minimum inhibitory concentration was 4 mg/L. In vivo experiments also proved that treatment with sorafenib significantly reduced the levels of TNF-α and IL-6 in breast tissue from mice mastitis, which was further confirmed by histopathology examination. These findings indicated that sorafenib could be utilized as an anti-infective agent for the treatment of infections caused by S. xylosus.
RESUMEN
A microwave assisted extraction technology was used to extract chrysophanol from rhubarb. The present study will focus on the optimum extraction conditions of chrysophanol and discuss the inhibitory effect of chrysophanol on the biofilm formation of Streptococcus suis (S. suis). A Box-Behnken design based on single-factor experiments was applied to optimize the microwave assisted extraction process and to study the factors' relationships with each other. The results showed that a microwave temperature of 56 °C, ethanol concentration of 70%, microwave power of 540 W and liquid to raw material ratio of 55 mL g-1 were the optimal conditions for the microwave method. The yield of chrysophanol was 2.54 ± 0.07% under the optimal conditions, which was in agreement with the predicted value (2.64%). Then, the chemical structure of the extracted chrysophanol was identified by LC-MS. In addition, in vitro experiments showed that chrysophanol has an inhibitory effect on S. suis (minimum inhibitory concentration was 1.98 µg mL-1) and was shown to significantly inhibit the capability of S. suis to form a biofilm using crystal violet staining. Finally, scanning electron microscopy analysis showed that the three-dimensional structure of the biofilm deposited by the S. suis community was destroyed by chrysophanol.
RESUMEN
Syringa oblata Lindl. (S. oblata) is a medicinal plant with effective broad-spectrum antibacterial activity, which can also inhibit Streptococcus suis biofilm formation. The processing of herbal medicine can purify medicinal materials, provide acceptable taste, reduce toxicity, enhance efficacy, influence performance and facilitate preparation. Thus, the aim of this study was to enhance the biofilm inhibition activity of S. oblata toward Staphylococcus xylosus (S. xylosus) using the best processing method. The content of rutin and flavonoids and the ability to inhibit the biofilm formation by S. oblata were examined using four processing methods. One of the best methods, the process of stir-frying S. oblata with vinegar, was optimized based on the best rutin content by response surface methodology. The histidine content and hisB gene expression of S. xylosus biofilm in vitro, resulting from stir-frying S. oblata with vinegar, were evaluated and were found to be significantly decreased and down-regulated, respectively. The results show that S. oblata stir-fried with vinegar can be used to effectively treat diseases resulting from S. xylosus infection. This is because it significantly inhibited S. xylosus biofilm formation by interfering with the biosynthesis of histidine; thus, its mechanism of action is decreasing histidine synthesis.
RESUMEN
Syringa oblata Lindl. (S. oblata) has been used in herbal medicines for treating bacterial diseases. It is also thought to inhibit Streptococcus suis (S. suis) biofilm formation. However, due to the inherent nature of the complexity in its chemical properties, it is difficult to understand the possible bioactive ingredients of S. oblata. The spectrum-effect relationships method was applied to screen the main active ingredients in S. oblata obtained from Heilongjiang Province based on gray relational analysis. The results revealed that Sub-MICs obtained from 10 batches of S. oblata could inhibit biofilm formation by S. suis. Gray relational analysis revealed variations in the contents of 15 main peaks and rutin was discovered to be the main active ingredient. Then, the function of rutin was further verified by inhibiting S. suis biofilm formation using crystal violet staining. Computational studies revealed that rutin may target the chloramphenicol acetyltransferase protein in the biofilm formation of S. suis. In conclusion, this study revealed that the spectrum-effect relationships and computational studies are useful tools to associate the active ingredient with the potential anti-biofilm effects of S. oblata. Here, our findings would provide foundation for the further understanding of the mechanism of S. oblata intervention in biofilm formation.
RESUMEN
We synthesized chitosan grafted with ß-cyclodextrin (CD-g-CS) from mono-6-deoxy-6-(p-toluenesulfonyl)-ß-cyclodextrin and chitosan. Two different amounts of immobilized ß-cyclodextrin (ß-CD) on CD-g-CS (QCD: 0.643 × 103 and 0.6 × 102 µmol/g) were investigated. The results showed that the amino contents of CD-g-CS with QCD = 0.643 × 103 and 0.6 × 102 µmol/g were 6.34 ± 0.072 and 9.41 ± 0.055%, respectively. Agar diffusion bioassay revealed that CD-g-CS (QCD = 0.6 × 102 µmol/g) was more active against Staphylococcus xylosus and Escherichia coli than CD-g-CS (QCD = 0.643 × 103 µmol/g). Cell membrane integrity tests and scanning electron microscopy observation revealed that the antimicrobial activity of CD-g-CS was attributed to membrane disruption and cell lysis. Uptake tests showed that CD-g-CS promoted the uptake of doxorubicin hydrochloride by S. xylosus, particularly for CD-g-CS with QCD = 0.6 × 102 µmol/g, and the effect was concentration dependent. CD-g-CS (QCD = 0.6 × 102 and 0.643 × 103 µmol/g) also improved the aqueous solubilities of sulfadiazine, sulfamonomethoxine, and sulfamethoxazole. These findings provide a clear understanding of CD-g-CS and are of great importance for reducing the dosage of antibiotics and antibiotic residues in animal-derived foods. The results also provide a reliable, direct, and scientific theoretical basis for its wide application in the livestock industry.
RESUMEN
The imidazole glycerophosphate dehydratase (IGPD) protein is a therapeutic target for herbicide discovery. It is also regarded as a possible target in Staphylococcus xylosus (S. xylosus) for solving mastitis in the dairy cow. The 3D structure of IGPD protein is essential for discovering novel inhibitors during high-throughput virtual screening. However, to date, the 3D structure of IGPD protein of S. xylosus has not been solved. In this study, a series of computational techniques including homology modeling, Ramachandran Plots, and Verify 3D were performed in order to construct an appropriate 3D model of IGPD protein of S. xylosus. Nine hits were identified from 2,500 compounds by docking studies. Then, these nine compounds were first tested in vitro in S. xylosus biofilm formation using crystal violet staining. One of the potential compounds, baicalin was shown to significantly inhibit S. xylosus biofilm formation. Finally, the baicalin was further evaluated, which showed better inhibition of biofilm formation capability in S. xylosus by scanning electron microscopy. Hence, we have predicted the structure of IGPD protein of S. xylosus using computational techniques. We further discovered the IGPD protein was targeted by baicalin compound which inhibited the biofilm formation in S. xylosus. Our findings here would provide implications for the further development of novel IGPD inhibitors for the treatment of dairy mastitis.