Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Zool Res ; 45(2): 242-252, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287905

RESUMEN

PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs ( Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys ( Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.


Asunto(s)
Primates , Proteínas Quinasas , Animales , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Primates/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Haplorrinos
2.
Adv Sci (Weinh) ; 10(31): e2301120, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37688357

RESUMEN

Accumulation of misfolded proteins leads to many neurodegenerative diseases that can be treated by lowering or removing mutant proteins. Huntington's disease (HD) is characterized by the intracellular accumulation of mutant huntingtin (mHTT) that can be soluble and aggregated in the central nervous system and causes neuronal damage and death. Here, an intracellular antibody (intrabody) fragment is generated that can specifically bind mHTT and link to the lysosome for degradation. It is found that delivery of this peptide by either brain injection or intravenous administration can efficiently clear the soluble and aggregated mHTT by activating the lysosomal degradation pathway, resulting in amelioration of gliosis and dyskinesia in HD knock-in (KI-140Q) mice. These findings suggest that the small intrabody peptide linked to lysosomes can effectively lower mutant proteins and provide a new approach for treating neurodegenerative diseases that are caused by the accumulation of mutant proteins.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Ratones , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Lisosomas/metabolismo , Proteínas Mutantes , Proteínas del Tejido Nervioso , Péptidos
3.
Cell Discov ; 9(1): 27, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36878905

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that affects social interaction and behavior. Mutations in the gene encoding chromodomain helicase DNA-binding protein 8 (CHD8) lead to autism symptoms and macrocephaly by a haploinsufficiency mechanism. However, studies of small animal models showed inconsistent findings about the mechanisms for CHD8 deficiency-mediated autism symptoms and macrocephaly. Using the nonhuman primate as a model system, we found that CRISPR/Cas9-mediated CHD8 mutations in the embryos of cynomolgus monkeys led to increased gliogenesis to cause macrocephaly in cynomolgus monkeys. Disrupting CHD8 in the fetal monkey brain prior to gliogenesis increased the number of glial cells in newborn monkeys. Moreover, knocking down CHD8 via CRISPR/Cas9 in organotypic monkey brain slices from newborn monkeys also enhanced the proliferation of glial cells. Our findings suggest that gliogenesis is critical for brain size in primates and that abnormal gliogenesis may contribute to ASD.

4.
Cell Mol Life Sci ; 79(11): 554, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251080

RESUMEN

Huntingtin-associated protein 1 (HAP1) is the first identified protein whose function is affected by its abnormal interaction with mutant huntingtin (mHTT), which causes Huntington disease. However, the expression patterns of Hap1 and Htt in the rodent brain are not correlated. Here we found that the primate HAP1, unlike the rodent Hap1, is correlatively expressed with HTT in the primate brains. CRISPR/Cas9 targeting revealed that HAP1 deficiency in the developing human neurons did not affect neuronal differentiation and gene expression as seen in the mouse neurons. However, deletion of HAP1 exacerbated neurotoxicity of mutant HTT in the organotypic brain slices of adult monkeys. These findings demonstrate differential HAP1 expression and function in the mouse and primate brains, and suggest that interaction of HAP1 with mutant HTT may be involved in mutant HTT-mediated neurotoxicity in adult primate neurons.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Proteínas del Tejido Nervioso , Animales , Humanos , Ratones , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Primates/genética , Primates/metabolismo
5.
Front Aging Neurosci ; 14: 934224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912074

RESUMEN

Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (juvenile), 8 (young adult), and 17 (old) years. We found that genomic 5hmC distribution was accumulated in the monkey brain as age increased and displayed unique patterns in the cerebellum and striatum in an age-dependent manner. We also observed a correlation between differentially hydroxymethylated regions (DhMRs) and genes that contribute to brain region-related functions and diseases. Our studies revealed, for the first time, the brain-region and age-dependent 5hmC modifications in the non-human primate and the association of these 5hmC modifications with brain region-specific function and potentially aging-related brain diseases.

6.
Front Cell Dev Biol ; 10: 954536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874823

RESUMEN

PINK1 has been characterized as a mitochondrial kinase that can target to damaged mitochondria to initiate mitophagy, a process to remove unhealthy mitochondria for protecting neuronal cells. Mutations of the human PINK1 gene are also found to cause early onset Parkinson's disease, a neurodegenerative disorder with the pathological feature of mitochondrial dysfunction. Despite compelling evidence from in vitro studies to support the role of PINK1 in regulation of mitochondrial function, there is still lack of strong in vivo evidence to validate PINK1-mediated mitophagy in the brain. In addition, growing evidence indicates that PINK1 also executes function independent of mitochondria. In this review, we discuss the mitochondrial dependent and independent functions of PINK1, aiming at elucidating how PINK1 functions differentially under different circumstances.

7.
Protein Cell ; 13(1): 26-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800266

RESUMEN

In vitro studies have established the prevalent theory that the mitochondrial kinase PINK1 protects neurodegeneration by removing damaged mitochondria in Parkinson's disease (PD). However, difficulty in detecting endogenous PINK1 protein in rodent brains and cell lines has prevented the rigorous investigation of the in vivo role of PINK1. Here we report that PINK1 kinase form is selectively expressed in the human and monkey brains. CRISPR/Cas9-mediated deficiency of PINK1 causes similar neurodegeneration in the brains of fetal and adult monkeys as well as cultured monkey neurons without affecting mitochondrial protein expression and morphology. Importantly, PINK1 mutations in the primate brain and human cells reduce protein phosphorylation that is important for neuronal function and survival. Our findings suggest that PINK1 kinase activity rather than its mitochondrial function is essential for the neuronal survival in the primate brains and that its kinase dysfunction could be involved in the pathogenesis of PD.


Asunto(s)
Encéfalo/enzimología , Homeostasis , Mitocondrias/enzimología , Mutación , Enfermedad de Parkinson/enzimología , Proteínas Quinasas/metabolismo , Animales , Macaca mulatta , Mitocondrias/genética , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética
8.
Cell Biosci ; 11(1): 218, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933675

RESUMEN

Neurodegenerative diseases represent a large group of neurological disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Although this group of diseases show heterogeneous clinical and pathological phenotypes, they share important pathological features characterized by the age-dependent and progressive degeneration of nerve cells that is caused by the accumulation of misfolded proteins. The association of genetic mutations with neurodegeneration diseases has enabled the establishment of various types of animal models that mimic genetic defects and have provided important insights into the pathogenesis. However, most of genetically modified rodent models lack the overt and selective neurodegeneration seen in the patient brains, making it difficult to use the small animal models to validate the effective treatment on neurodegeneration. Recent studies of pig and monkey models suggest that large animals can more faithfully recapitulate pathological features of neurodegenerative diseases. In this review, we discuss the important differences in animal models for modeling pathological features of neurodegenerative diseases, aiming to assist the use of animal models to better understand the pathogenesis and to develop effective therapeutic strategies.

10.
Int Immunopharmacol ; 35: 280-286, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27085679

RESUMEN

Augmenter of liver regeneration (ALR), produced and released by hepatocytes, has cytoprotective and immunoregulatory effects on liver injury, and has been used in many experimental applications. However, little attention has been paid to the effects of ALR on concanavalin A (Con A)-induced hepatitis. The purpose of this paper is to explore the protective effect of ALR on Con A-induced hepatitis and elucidate potential mechanisms. We found that the ALR pretreatment evidently reduced the amount of ALT and AST in serum. In addition, pro-inflammatory cytokines, chemokines and iNOS were suppressed. ALR pretreatment also decreased CD4(+), CD8(+) T cell infiltration in liver. Besides, we observed that ALR pretreatment was capable of suppressing the activation of several signaling pathways in Con A-induced hepatitis. These findings suggest that ALR can obviously weaken Con A-induced hepatitis and ALR has some certain immune regulation function.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Hepatitis Animal/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/uso terapéutico , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Concanavalina A/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(5): 438-40, 2002 Oct.
Artículo en Chino | MEDLINE | ID: mdl-12513744

RESUMEN

In order to establish a new more rapid, safe and sensitive colorimetric assay for the proliferation of leukemic cells, MTS/pms has been developed. This automated colorimetric assay is based on the characteristic of viable and metabolically active leukemic cells to cleave MTS/pms into a water-soluble product whose optical density is determined at 492 nm by an automated microtiter-plate reader photometer. The results indicated that only active leukemic cells cleaved MTS/pms into product measured, and dead cells did not reduce MTS/pms. A linear relations hip were found between the viable cell number and optical density of MTS/pms cleaved by HL-60 and K562 cell (r = 0.963). Compared with MTT and INT assays, the reduced product of MTS/pms is water-soluble. It is concluded that MTS/pms colorimetric assay is more rapid, accurate and sensitive for the bioassay of proliferation of leukemic cells.


Asunto(s)
Colorimetría/métodos , Leucemia/patología , Metosulfato de Metilfenazonio/metabolismo , Sales de Tetrazolio/metabolismo , Tiazoles/metabolismo , División Celular , Formazáns/metabolismo , Células HL-60 , Humanos , Células K562
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 10(2): 112-4, 2002 Apr.
Artículo en Chino | MEDLINE | ID: mdl-12513810

RESUMEN

In order to study the relationship between the expression of glutathione S-transferase (GST) in leukemic cells and the chemoresistance in patients with acute leukemia, the expressions of GST activity and GST mRNA were measured according to spectrophotometric assay based on the use of 1-choloro-2, 4-dinitro benzene and in situ hybridization. The results were studied in correlation with some clinical and pathological data. Results showed that: 1. There is no significant differences between activities of the enzyme with the different leukemia types according to the FAB classification. 2. GST activity and GST mRNA expression in the patients, both untreated and relapse, were (4.5 +/- 1.0) U, 33.3% and (7.9 +/- 15) U, 66.3% respectively. 3. In 56 patients, GST activity was 1.7 +/- 0.7, 5.9 +/- 2.0 and 9.3 +/- 1.7 U and GST mRNA expression was 13.3%, 29.7% and 76.6%, respectively, in CR, PR and NR groups. The lowest values of GST activity and GST mRNA expression were observed in those patients who achieved complete remission. The highest values of GST activity and GST mRNA expression were observed in those patients with no response to treatment. It was concluded that the expression of GST in patients with acute leukemia is closely related to the chemosensitivities clinically. Determinations of GST activity and GST mRNA are useful for predicting the chemosensitivities and the prognosis of the disease.


Asunto(s)
Glutatión Transferasa/metabolismo , Leucemia/enzimología , Adolescente , Adulto , Anciano , Resistencia a Antineoplásicos , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutatión Transferasa/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/genética , Leucemia Linfoide/tratamiento farmacológico , Leucemia Linfoide/enzimología , Leucemia Linfoide/genética , Leucemia Monocítica Aguda/tratamiento farmacológico , Leucemia Monocítica Aguda/enzimología , Leucemia Monocítica Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...