Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 518-521, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300048

RESUMEN

We designed a broadband lens along with a graphene/silicon photodiode for wide spectral imaging ranging from ultraviolet to near-infrared wavelengths. By using five spherical glass lenses, the broadband lens, with the modulation transfer function of 0.38 at 100 lp/mm, corrects aberrations ranging from 340 to 1700 nm. Our design also includes a broadband graphene/silicon Schottky photodiode with the highest responsivity of 0.63 A/W ranging from ultraviolet to near-infrared. By using the proposed broadband lens and the broadband graphene/silicon photodiode, several single-pixel imaging designs in ultraviolet, visible, and near-infrared wavelengths are demonstrated. Experimental results show the advantages of integrating the lens with the photodiode and the potential to realize broadband imaging with a single set of lens and a detector.

2.
Nanomicro Lett ; 16(1): 58, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112845

RESUMEN

Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by "permeation-diffusion-deformation" phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m-1 K-1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.

3.
Nanomicro Lett ; 14(1): 12, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34862936

RESUMEN

The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 105 S m-1) and thermal conductivity (745.65 W m-1 K-1) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA